PERSISTENT, PROTECTED AND CACHED: BUILDING BLOCKS FOR MAIN MEMORY DATA STORES

Iulian Moraru, David G. Andersen, Michael Kaminsky, Niraj Tolia, Nathan Binkert, Reinhard Munz

NVRAM

WHY THE MEMORY BUS?

NVRAM INTERFACE

	DRAM	PCM	Flash
Read Latency	20-50 ns	50-100 ns	26 µs
Write Latency	20-50 ns	150-200 ns	26 µs
Read bandwidth	2 GB/s/die	1 GB/s/die	65 MB/s/die
Write bandwidth	2 GB/s/die	50-100 MB/s/die	45 MB/s/die
Write cycles	> 10 ¹⁵	10 ⁸	10 ⁶

CHALLENGE

SOURCES OF DATA LOSS

HARDWARE WEAR LEVELING

- Fundamental challenge:
 - High throughput and strong durability guarantees, at the same time
- Prevent data loss
- Maintain "main memory" benefits
- Wear-out
- Erroneous writes
- Incomplete updates
- Power failures
- Application crashes

- Not a complete solution
 - High overhead (for attack prevention)
- Adaptive schemes
 - Penalize applications that write often to one location
- Needs software's help

MEMORY ALLOCATORS FOR DRAM NVMALLOC

- Unsuitable for NVRAM
- Caching freed blocks for quick reuse
- Metadata embedded in allocated / free blocks
 - More writes than necessary
 - Frequent writes to one location

ROBUST MEMORY ALLOCATOR

- Metadata corruption can cause data loss
 - Solution: Add header checksum, over
 - Size
 - State
 - Location
 - Detect and contain corruptions

NVMALLOC RESULTS

WEAR LEVELING

Malloc performs 30-50% more writes than NVMalloc

FRAGMENTATION

#Free/#Allocate	NVMalloc frag.	malloc frag. (total/external)
Tatio	(lotal/external)	(ioia/exiemal)
1/3	2.14% (0.26%)	1.63% (0.32%)
1/2	2.29% (0.41%)	2.08% (0.51%)
1/1	10.45% (8.75%)	59.18% (10.68%)

One million allocations/deallocations

OVERHEAD

Memcached, one million operations (75% inserts, 25% deletes)

Allocator	Allocation size	Avg. time [ms] (std. err.)
Memcached slab	10 B - 4 KB	1914 (7)
malloc	10 B - 4 KB	1997 (13)
NVMalloc	10 B - 4 KB	1856 (4)
Memcached slab	1 KB	1200 (5)
malloc	1 KB	1279 (6)
NVMalloc	1 KB	1258 (5)

ERRONEOUS WRITES ASYNCHRONOUS MPROTECT CACHE LINE COUNTERS

NVRAM: Much wider erroneous writes

- Consistent updates w/o sacrificing CPU cache use
- Make applications aware of the state of their updates: