FILESYSTEM METADATA MANAGEMENT USING FAST KEY-VALUE STORE

Kai Ren, Garth Gibson (CMU)

* Today’s local filesystems are filled with large files but overwhelmed = |n today’s Big-Data world, high ingestion workloads are prevalent
by more small files and overwhelm traditional B-Trees
= Small files widely-spread on disk needing more disk seeks to get = Write optimized data structures like LSM (Log Structured Merge)
attributes and data Tree and its variants are proposed:
= Key idea: develop new directory representation to embed file
v o yrep C T TRead | Update | RangeQuery
attributes and small file data
)]] CoW B-Tree O(LoggN) O(LoggN) O(LogN+L/B)
= Approach: use LevelDB with one table for all directories random 1/Os
0 06995 0000 . LSM Tree O(LogN) O(LogN/B) O(LogN+L/B)
oo el o ‘ Sequential I/Os
s PR >

o]

<
S00>»n ="

LSM DATA STRUCTURE OVERVIEW

coooo0o00
[#)]

whose size < x
S

LI L B B L

@]

ocz

= NWrPrOON OO0
L]

Fraction of space used by file
Fraction of space used by file
whose size < x

COO0OO0O0OO0O Of

? i ? 1 = LSM, R-COLA, LevelDB and other variants:
e e E = C[i] (i > 0): an immutable stable containing sorted (k, v) pairs,
Old: Directory Inode Data and a b-tree index
“/) 4KB = Size of C[i+1] = R * size of C[i]
COntents » Insertion: write to in-ram tablet, later will be written to disk
New: Directory table as a key-value store = Compaction: merging C[0]...C[i] into C[i+1] when C[0]...C]i] are full
PathName | Attributes ~ |Data = Range query: search sstables with appropriate range in each C[i]
foo rWXr-wr-- -
bar rWXr-wr-X ~AM: o ._
Disk: c1 [l 1B

coll W
FILESYSTEM DIRECTORY IMPLEMENTATION cEEEEEEEE

= Built on top of Fuse file system, storing metadata and small files EVALUAT'ON OF Fl LESYSTEM M ETADATA

into LevelDB

Fuse Filesystem = Workload: 1M empty files, only attributes in LevelDB
Metada“ﬂnﬁ\ * Random Read: stat a file randomly
—H— Big Files = Random Write: chmod / utime a file randomly
| = Memory limit: 600MB for LevelDB, 1000MB for Ext4 and Btrfs
= Limiting memory tries to control different internal cache sizes.
‘ Local Filesystem System with In-mem inode size (bytes)
16000
14000
DATA LAYOUT o 12000
@ 10000
= 8000
= Schema of Metadata: O 2888
= Key: [Inode ID of Parent Directory, CRC Hash(filename)] 2000 L
= Value: [Filename, Attributes] O LevelDB (256)| Extd(256) | Btrfs (656)
- . ® Random Read ,
Schema of Data: = 50%Read + 50%Write 3%03%?9 113335578 1@22?39
N Key: Inode |D’ Chunk ID = Random Write 2173.91 781.43 1246.9
* Value: Chunk content = Workload: Write 1M 1KB files sequential, overwrite 1M 1KB files.

Compare sequential overwrite, random overwrite, and overwrite

EVALUATION OF LEVELDB VS. B-TREES with read operations

= Memory Limit: 512MB, Disk Partition: 5GB

= 1 Million entries (key: 16bytes, value: 128bytes

200 25000
250 20000
200 %
< c 15000
g 150 S
o 10000
100 (V)
» 5000
0 Fills F'IF dom ReadRand ReadRand 0 — - a : 0 0
o Segpental Ssquenil SO%Read:50% fandom
m LevelDB 52.1 19.4 7.9 248.9 0.7 36.7 - LevelDB 444 581 9071 2279
m Kyoto Cabinet 2.9 0.9 8.5 110.3 7.3 107.5 = Ext4 52 324 10886 12754.5
= Btrfs 59 318 20655 21669

Carnegie

Mell Georgia @ ' @
Ugiv(é?sity Tech - tel

8 UNGEIOY UC Berkeley.

Intel Science & Technology
Center for Cloud Computing

