FILESYSTEM METADATA MANAGEMENT USING FAST KEY-VALUE STORE
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* Today’s local filesystems are filled with large files but overwhelmed = |n today’s Big-Data world, high ingestion workloads are prevalent
by more small files and overwhelm traditional B-Trees
= Small files widely-spread on disk needing more disk seeks to get = Write optimized data structures like LSM (Log Structured Merge)
attributes and data Tree and its variants are proposed:
= Key idea: develop new directory representation to embed file
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? i ? 1 = LSM, R-COLA, LevelDB and other variants:
e e E = C[i] (i > 0): an immutable stable containing sorted (k, v) pairs,
Old: Directory Inode Data and a b-tree index
“/) 4KB = Size of C[i+1] = R * size of C[i]
COntents » Insertion: write to in-ram tablet, later will be written to disk
New: Directory table as a key-value store = Compaction: merging C[0]...C[i] into C[i+1] when C[0]...C]i] are full
PathName | Attributes ~ |Data = Range query: search sstables with appropriate range in each C[i]
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FILESYSTEM DIRECTORY IMPLEMENTATION cEEEEEEEE

= Built on top of Fuse file system, storing metadata and small files EVALUAT'ON OF Fl LESYSTEM M ETADATA

into LevelDB

Fuse Filesystem = Workload: 1M empty files, only attributes in LevelDB
Metada“ﬂnﬁ\ * Random Read: stat a file randomly
—H— Big Files = Random Write: chmod / utime a file randomly
| = Memory limit: 600MB for LevelDB, 1000MB for Ext4 and Btrfs
= Limiting memory tries to control different internal cache sizes.
‘ Local Filesystem System with In-mem inode size (bytes)
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= Schema of Metadata: O 2888
= Key: [Inode ID of Parent Directory, CRC Hash(filename)] 2000 L
= Value: [Filename, Attributes] O LevelDB (256)| Extd(256) | Btrfs (656)
- . ® Random Read ,
Schema of Data: = 50%Read + 50%Write 3%03%?9 113335578 1@22?39
N Key: Inode |D’ Chunk ID = Random Write 2173.91 781.43 1246.9
* Value: Chunk content = Workload: Write 1M 1KB files sequential, overwrite 1M 1KB files.

Compare sequential overwrite, random overwrite, and overwrite

EVALUATION OF LEVELDB VS. B-TREES with read operations

= Memory Limit: 512MB, Disk Partition: 5GB

= 1 Million entries (key: 16bytes, value: 128bytes
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Carnegie

Mell Georgia @ ' @
Ugiv(é?sity Tech - tel

8 UNGEIOY UC Berkeley.

Intel Science & Technology
Center for Cloud Computing




