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• Monitoring software updates – see poster “Runtime Validation of Incremental Code Changes” 
• Monitoring parallel applications with improved precision on relaxed memory-consistency models 
• Monitoring system software (e.g. device drivers) – see figure at right 
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Eliminating all software bugs prior to release is difficult 
Lifeguards (software monitoring tools) can catch failures at runtime 
Unfortunately, software-only lifeguards are too slow (10X-100X slowdown) 

Design hardware and system software support enabling a broad range of  
powerful lifeguards without sacrificing application performance 

Example Lifeguards: 
 

• Data flow tracker  
• Data race detector 
• Memory access checker 
• Control flow verifier 

•Multicore processors provide additional execution resources to run lifeguards 
•Fine-grained application events are captured in a log during execution 
•Hardware accelerators speed up common lifeguard functionalities 

Application: 
 

Unmodified, but optional 
library annotations bridge 
software-hardware semantic 
gap 

Operating System: 
 

Stop-on-system call support 
limits damage from software 
bugs 

Event-driven Support: 
 

Eliminates lifeguard fetch-and-decode 
loop and enables efficient filtering 

 
• LBA reduces average overhead for monitoring single-core apps to 2% (vs. 20X) for AddrCheck, 40% (vs. 32X) for LockSet, and   
 36% (vs. 58X)  for TaintCheck  [ISCA 2008, Micro TopPicks 2009]  
• LBA can effectively monitor parallel applications [two papers in ASPLOS 2010] 
• LBA hot path optimizations reduce need for hardware accelerators [PLDI 2010] 

MOTIVATION: SAFER SOFTWARE EXECUTION 
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