
LOG-BASED ARCHITECTURES
Phillip Gibbons, Michael Kozuch (Intel) Todd Mowry, Onur Mutlu (CMU)

Michelle Goodstein, Gennady Pekhimenko, Olatunji Ruwase, Vivek Seshadri (CMU)

• Monitoring software updates – see poster “Runtime Validation of Incremental Code Changes”
• Monitoring parallel applications with improved precision on relaxed memory-consistency models
• Monitoring system software (e.g. device drivers) – see figure at right

Log Transport

Core 1

Core 2

Fetch &
decompress

Compress
& store

Log record
 capture

Log record
 dispatch

Operating System

Application

Lifeguard

Eliminating all software bugs prior to release is difficult
Lifeguards (software monitoring tools) can catch failures at runtime
Unfortunately, software-only lifeguards are too slow (10X-100X slowdown)

Design hardware and system software support enabling a broad range of
powerful lifeguards without sacrificing application performance

Example Lifeguards:

• Data flow tracker
• Data race detector
• Memory access checker
• Control flow verifier

•Multicore processors provide additional execution resources to run lifeguards
•Fine-grained application events are captured in a log during execution
•Hardware accelerators speed up common lifeguard functionalities

Application:

Unmodified, but optional
library annotations bridge
software-hardware semantic
gap

Operating System:

Stop-on-system call support
limits damage from software
bugs

Event-driven Support:

Eliminates lifeguard fetch-and-decode
loop and enables efficient filtering

• LBA reduces average overhead for monitoring single-core apps to 2% (vs. 20X) for AddrCheck, 40% (vs. 32X) for LockSet, and
 36% (vs. 58X) for TaintCheck [ISCA 2008, Micro TopPicks 2009]
• LBA can effectively monitor parallel applications [two papers in ASPLOS 2010]
• LBA hot path optimizations reduce need for hardware accelerators [PLDI 2010]

MOTIVATION: SAFER SOFTWARE EXECUTION

PROJECT GOAL

KEY HARDWARE IDEAS

PROGRESS TO DATE

CURRENT RESEARCH CHALLENGES

VM Monitor
Log-Based Architectures

Device Driver
VM

Lifeguard
VM

Using Virtual Machines to Monitor
Kernel-Mode Drivers

	Slide Number 1

