
LAZYBASE: TRADING FRESHNESS FOR PERFORMANCE IN A SCALABLE DATABASE
Jim Cipar*, Greg Ganger*, Kim Keeton^, Brad Morrey^, Craig Soules^, Alistair Veitch^ (*CMU, ^HP)

LAZYBASE QUERY CONSISTENCY AND PERFORMANCE

INGEST SCALING AND UTILIZATION

FUTURE WORK

▪ Data analysis for very dynamic corpi requires...
▪ High throughput updates → large batches of updates
▪ Comprehensible consistency → batches applied atomically
▪ Up-to-date queries → query batches before they are applied

▪ Pipelined DB processing self-consistent update files (SCUs)
▪ Each pipeline stage produces queryable output
▪ Earlier output is "fresher" but takes longer to query

Ingest ID-Remapping

ID
Assign

Update
Rewrite

Sort Merge
Update
Clients

...

Query
Clients

A

B

C

Output
Data
Format:

Unsorted
SCU

Remapped
SCU

Sorted
SCU

Authority
Tables

Coordinator

▪ Parallelizing stages solves 2 problems:
▪ Need way to scale out to large clusters
▪ Pipelines susceptible to bottlenecks

▪ Need way to assign resources to stages
▪ Could model pipeline and optimize offline

▪ Difficult in large heterogenous system
▪ Stalled by "pig in a python" problems

▪ Our approach: dynamic allocation
▪ ... of stage instances and locations
▪ Automatically discovers bottlenecks
▪ Adjusts assignment to handle bursts

Allocation of resources to 
stages over time Ingest scalability and efficiency

▪ Atomic updates with consistent reads
▪ Write-only transactions: most recent snapshot
▪ Read-only transactions: stale consistent snapshot

▪ Configurable, per-query freshness 
▪ Expressed as seconds out-of-date

▪ Fresher queries examine output from earlier pipeline stages
▪ Processed in parallel on all servers storing relevant data

▪ Data can be range partitioned for improved query parallelism

Point query performance
▪ LazyBase point query 

throughput limited by page 
decompression for 

Tradeoff between freshness 
and query performance
▪ Increasing freshness also 

increases query latency

Range query performance 
▪ LazyBase sorts data, providing 

dramatic improvements over 
Cassandra's hash distribution

▪ Exploring the impact of staleness on ...
▪ Consistency specification
▪ Query optimization

▪ Matching tasks and servers intelligently
▪ Get data to queryable state faster
▪ Exploit data locality
▪ Pipeline scheduling for improved query parallelism

▪ Fault tolerance
▪ Intermediate data increases availability
▪ Higher query cost when nodes have failed 


