LAZYBASE: TRADING FRESHNESS FOR PERFORMANCE IN A SCALABLE DATABASE

Jim Cipar*, Greg Ganger*, Kim Keeton”, Brad Morrey”, Craig Soules?, Alistair Veitch® (*CMU, "HP)
LAZYBASE QUERY CONSISTENCY AND PERFORMANCE

= Data analysis for very dynamic corpi requires... = Atomic updates with consistent reads
= High throughput updates =» large batches of updates = Write-only transactions: most recent snapshot
= Comprehensible consistency =» batches applied atomically = Read-only transactions: stale consistent snapshot
= Up-to-date queries = query batches before they are applied = Configurable, per-query freshness
= Pipelined DB processing self-consistent update files (SCUs) = Expressed as seconds out-of-date
= Each pipeline stage produces queryable output = Fresher queries examine output from earlier pipeline stages
= Earlier output is "fresher"” but takes longer to query = Processed in parallel on all servers storing relevant data

= Data can be range partitioned for improved query parallelism

‘ Coordinator ‘

0.7 - -
Update A Query — Freshest
Clients Ingest ID-Remapping Sort Clients o6 M | ssout of date || Tradeoff between freshness
0.5 V| eeworeeell and query performance
> == = - .
B Zoal W E * Increasing freshness also
S0zl iy i1 increases query latency
T @ I
Output 01 I
Data ' ' R E
Format: - oo lezzzoomoom oo s . . .
Unsorted Remapped Sorted Authority 0 200 400 Elgggedgt(i)rgr)m1((5))OO +200 1400
SCU SCU SCU Tables
25 . . —
100 - - - A—A |azyBase '/ .
= oo 2 |[e-e cassandre . | Point query performance
2 g0 | = = LazyBase point query
o .0 « .
x 70| S5 | . throughput limited by page
g - decompression for
2 50} S
> a 10 |
£ 40| 5
g 30 5 |
S 20| =
10 - - -
0 500 1000 1500 2000 0 ' ' ' ' ' '
SCU size (k rows) 0) 10 20 30 40 50 60 70
Query clients
INGEST SCALING AND UTILIZATION 18
16 | Range query performance
® ° %\ 14 i - e ®
= Parallelizing stages solves 2 problems: 3 LazyBas.e .sorts data, providing
= Need way to scale out to large clusters : dramatic improvements over
cea way , B i ~— lLazyBase 1| Cassandra’s hash distribution
* Pipelines susceptible to bottlenecks 3 8| ®- Cassandral
o (&) i
* Need way to assign resources to stages 3 °
NURT .. : E 4400 -®--0---0---0
= Could model pipeline and optimize offline "
= Difficult in large heterogenous system 0 0000000
o 0) 10 20 30 40 50 60 70
= Stalled by "pig in a python" problems Query clients
= Our approach: dynamic allocation
= ... of stage instances and locations FUTURE WORK

= Automatically discovers bottlenecks
= Adjusts assighment to handle bursts

= Exploring the impact of staleness on ...

= Consistency specification
Allocation of resources to = Query optimization

stages over time Ingest scalability and efficienc , , ,
s 2raBES OVET T E— _g —] Y - L Matching tasks and servers intelligently

©merge || yop [Lze Cassandra | = Get data to queryable state faster
. rewrite = Exploit data locality
= Pipeline scheduling for improved query parallelism
= Fault tolerance
" Intermediate data increases availability
= Higher query cost when nodes have failed

D

W

150 |

N

Number of workers
throughput (k rows/s)

=

‘A z s
o [] 50 |
as VAt nt iy W
R bl e AU 1S '\' -
-,:- l’\
) :‘ -
Jarv : O

200 0O o600 800 1000 1200 1400 0 5 10 15 20
Time (s) number of workers

o

0

C [- - @
Vot © Georgia intel)

University

WU UC Berkeley.

Intel Science & Technology
Center for Cloud Computing

