LAZYBASE: TRADING FRESHNESS FOR PERFORMANCE IN A SCALABLE DATABASE
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LAZYBASE QUERY CONSISTENCY AND PERFORMANCE

= Data analysis for very dynamic corpi requires... = Atomic updates with consistent reads
= High throughput updates =» large batches of updates = Write-only transactions: most recent snapshot
= Comprehensible consistency =» batches applied atomically = Read-only transactions: stale consistent snapshot
= Up-to-date queries = query batches before they are applied = Configurable, per-query freshness
= Pipelined DB processing self-consistent update files (SCUs) = Expressed as seconds out-of-date
= Each pipeline stage produces queryable output = Fresher queries examine output from earlier pipeline stages
= Earlier output is "fresher"” but takes longer to query = Processed in parallel on all servers storing relevant data

= Data can be range partitioned for improved query parallelism
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= Parallelizing stages solves 2 problems: 3 LazyBas.e .sorts data, providing
= Need way to scale out to large clusters : dramatic improvements over
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= Could model pipeline and optimize offline "
= Difficult in large heterogenous system 0 0000000
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= Stalled by "pig in a python" problems Query clients
= Our approach: dynamic allocation
= ... of stage instances and locations FUTURE WORK

= Automatically discovers bottlenecks
= Adjusts assighment to handle bursts

= Exploring the impact of staleness on ...

= Consistency specification
Allocation of resources to = Query optimization
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©merge || yop [Lze Cassandra | = Get data to queryable state faster
. rewrite = Exploit data locality
= Pipeline scheduling for improved query parallelism
= Fault tolerance
" Intermediate data increases availability
= Higher query cost when nodes have failed
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