
RUN-TIME VALIDATION OF INCREMENTAL CODE CHANGES
Gennady Pekhimenko, Todd Mowry, Onur Mutlu (Carnegie Mellon), Phillip Gibbons, Michael Kozuch (Intel)

MOTIVATION AND GOALS KEY INSIGHTS AND OBSERVATIONS
 Software security/correctness verification
 Static verification is desirable, but complicated
 requires formal specification
 makes conservative decisions that lead to false positives

 Is it possible to make validation at run-time?
 General case is complicated, can we make it more tractable?
 Yes, if
 we exploit cloud software specific characteristics
 avoid complex full comparison

 Invariants description and detection
 How to define acceptable differences in application?
 How to detect useful invariants for future checking?

 Run-time validation tool
 Software-only approach is inefficient
 Hardware-assisted LBA threads will help
 Domain specific optimizations + static code analysis
 i.e. merge based on confidence status

RESEARCH CHALLENGES

INVARIANTS DETECTION

 Incremental code changes
 Cloud software develops through “small” code changes
 Similar to
 production software patches
 software/compiler optimizations

 Sophisticated fine-grain software analysis is possible
 Log-Based Architectures Projects (LBA)

SOFTWARE TRANSFORMATIONS

Lifeguard

Application

 Permanent or static
 E.g. :
 pointer p is not NULL
 value v is in the range (0,1000)
 value v equals to 2*x + 3
 for all treenode objects n, n.left.value < n.right.value

 It is possible to collect such invariants automatically
 E.g. Daikon invariant detector

 Transient or dynamic
 Invariants at the point of comparison
 loop iteration count
 boolean flags

 Global
 Control flow graph (CFG)

 Software optimizations -- good starting point
 Effects are more predictable
 Simple invariants can be sufficient

 Speculative transformations
 can potentially break sequential semantics
 local memory pooling
 auto-parallelization
 semantic optimizations
 data types with different precision

 Software patches

RESEARCH CHALLENGES

Applications
System Software
Operating System

 Software stack:

 Different levels have different granularity of validation checks
 i.e. output comparisons for scripting languages

 Multiple options in how to define invariants and confidence

C, Assembler

C/C++

Java, Python, Perl
Original

.

.

.

Modified
.
.
.

Compute
Invariants

Time Application

Epochs

Application

Run-time
Validation

	Slide Number 1

