
RUN-TIME VALIDATION OF INCREMENTAL CODE CHANGES
Gennady Pekhimenko, Todd Mowry, Onur Mutlu (Carnegie Mellon), Phillip Gibbons, Michael Kozuch (Intel)

MOTIVATION AND GOALS KEY INSIGHTS AND OBSERVATIONS
 Software security/correctness verification
 Static verification is desirable, but complicated
 requires formal specification
 makes conservative decisions that lead to false positives

 Is it possible to make validation at run-time?
 General case is complicated, can we make it more tractable?
 Yes, if
 we exploit cloud software specific characteristics
 avoid complex full comparison

 Invariants description and detection
 How to define acceptable differences in application?
 How to detect useful invariants for future checking?

 Run-time validation tool
 Software-only approach is inefficient
 Hardware-assisted LBA threads will help
 Domain specific optimizations + static code analysis
 i.e. merge based on confidence status

RESEARCH CHALLENGES

INVARIANTS DETECTION

 Incremental code changes
 Cloud software develops through “small” code changes
 Similar to
 production software patches
 software/compiler optimizations

 Sophisticated fine-grain software analysis is possible
 Log-Based Architectures Projects (LBA)

SOFTWARE TRANSFORMATIONS

Lifeguard

Application

 Permanent or static
 E.g. :
 pointer p is not NULL
 value v is in the range (0,1000)
 value v equals to 2*x + 3
 for all treenode objects n, n.left.value < n.right.value

 It is possible to collect such invariants automatically
 E.g. Daikon invariant detector

 Transient or dynamic
 Invariants at the point of comparison
 loop iteration count
 boolean flags

 Global
 Control flow graph (CFG)

 Software optimizations -- good starting point
 Effects are more predictable
 Simple invariants can be sufficient

 Speculative transformations
 can potentially break sequential semantics
 local memory pooling
 auto-parallelization
 semantic optimizations
 data types with different precision

 Software patches

RESEARCH CHALLENGES

Applications
System Software
Operating System

 Software stack:

 Different levels have different granularity of validation checks
 i.e. output comparisons for scripting languages

 Multiple options in how to define invariants and confidence

C, Assembler

C/C++

Java, Python, Perl
Original

.

.

.

Modified
.
.
.

Compute
Invariants

Time Application

Epochs

Application

Run-time
Validation

	Slide Number 1

