ROW BUFFER LOCALITY-AWARE CACHING POLICY FOR HYBRID MEMORIES HanBin Yoon, Justin Meza, Rachata Ausavarungnirun, Rachael Harding, Onur Mutlu (CMU)

MOTIVATION / BACKGROUND

- DRAM scalability is reaching its limits
- Memories like *phase-change memory* (PCM) offer scalability, but have drawbacks
- Use DRAM as a cache to PCM

	P	CM	DRAM
Data storage	Res	istance	Charge
Scalability	F	ligh	Low
Latency (R/W	′) ~4>	∼12x</td <td>1x</td>	1 x
Energy (R/W)	~2>	⟨∕~40x	1x
Endurance	10 ⁸	10 ⁸ writes	
		PCM	DRAM
	Row buffer hit	40 ns	40 ns

- DRAM and PCM both employ row buffers
- Same hit latency, different row miss latencies
- Store data which miss in the row buffer and are reused frequently in DRAM

MECHANISM

KEY INSIGHT

- For a subset of rows in PCM,
 - Track misses to predict future locality
 - Track accesses to predict future reuse
 - Cache data after a threshold number of misses and

EVALUATION

- 16-core system, 32/512 KB L1/L2 per core
- 16 MB DRAM / 512 MB PCM per core
- DDR3-1066, 8/16 banks DRAM/PCM

accesses in an interval

 Dynamically adjust threshold to adapt to runtime characteristics

