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Internet Services
▪ Distributed file system
 ▪ Purpose-built for anticipated workloads
▪ Hadoop & Hadoop distributed file system (HDFS)
 ▪ Use triplication for reliability
 ▪ Use file layout to collocate computation and data

High performance computing (HPC) [e.g. PVFS]
▪ Equally large scale applications
▪ Parallel file system
 ▪ Concurrent reads and writes
 ▪ Typically support POSIX and VFS interface

HDFS/PVFS data layout schemes:
▪ HDFS Random: 1 copy on writer’s disks, 2 copies random
▪ PVFS Round-robin: 3 copies striped in file
▪ PVFS Hybrid: 1 copy on writer’s disks, 2 striped

▪ OpenCloud cluster - 51 nodes (8-core 2.8 GHz, 16GB DRAM, 4 
SATA disks, 1 used in experiments, 10 GE)

▪ Benchmarks
▪ Data-set: 50 million 100-byte records (50GB)
▪ Workload: write, read, grep (for a rare pattern), sort

▪ Applications
▪ Sampling (B. FU): Read 71GB astronomy data-set
▪ FoF (B. FU): Cluster & join astronomical objects
▪ Twitter (B. Meeder): Reformat 24GB to be 56GB

▪ PVFS performance is comparable to HDFS for both Hadoop 
benchmarks and scientific applications

▪ By using both readahead buffer and file layout information, 
PVFS performance is comparable to HDFS

▪ With a few modifications in a non-intrusive shim layer, PVFS 
matchs performance for Hadoop applications

▪ File layout information is essential for Hadoop to collocate 
computation and data
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PVFS Shim responsibilities:
▪ Readahead buffer: reads from PVFS in 4MB requests
▪ File layout: file layout exposed as extended attributes
▪ Replication: triplicates data in one PVFS file
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▪ [Left] HDFS performance is limited by head-of-line blocking when 
creating file while the disk is busy flushing write-back buffer

▪ [Right] HDFS pipelined replication improves parallelism and 
resource utilization
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