
ON THE DUALITY OF DATA-INTENSIVE FILE SYSTEM DESIGN: RECONCILING HDFS AND PVFS
Wittawat Tantisiriroj, Swapnil Patil, Garth Gibson (CMU) - Seung Woo Son, Samuel J. Lang, Robert B. Ross (ANL)

OVERVIEW EXPERIMENT SETUP

PVFS PLUG-IN UNDER HADOOP STACK

EXPERIMENT RESULTS

CONCLUSIONS

0

100

200

300

400

500

600

Grep Benchmark

Co
m

pl
et

io
n

Ti
m

e
(s

ec
on

ds
) HDFS

Vanilla PVFS

PVFS w/ readahead bu er

PVFS w/ readahead bu er and layout

Internet Services
▪ Distributed file system
 ▪ Purpose-built for anticipated workloads
▪ Hadoop & Hadoop distributed file system (HDFS)
 ▪ Use triplication for reliability
 ▪ Use file layout to collocate computation and data

High performance computing (HPC) [e.g. PVFS]
▪ Equally large scale applications
▪ Parallel file system
 ▪ Concurrent reads and writes
 ▪ Typically support POSIX and VFS interface

HDFS/PVFS data layout schemes:
▪ HDFS Random: 1 copy on writer’s disks, 2 copies random
▪ PVFS Round-robin: 3 copies striped in file
▪ PVFS Hybrid: 1 copy on writer’s disks, 2 striped

▪ OpenCloud cluster - 51 nodes (8-core 2.8 GHz, 16GB DRAM, 4
SATA disks, 1 used in experiments, 10 GE)

▪ Benchmarks
▪ Data-set: 50 million 100-byte records (50GB)
▪ Workload: write, read, grep (for a rare pattern), sort

▪ Applications
▪ Sampling (B. FU): Read 71GB astronomy data-set
▪ FoF (B. FU): Cluster & join astronomical objects
▪ Twitter (B. Meeder): Reformat 24GB to be 56GB

▪ PVFS performance is comparable to HDFS for both Hadoop
benchmarks and scientific applications

▪ By using both readahead buffer and file layout information,
PVFS performance is comparable to HDFS

▪ With a few modifications in a non-intrusive shim layer, PVFS
matchs performance for Hadoop applications

▪ File layout information is essential for Hadoop to collocate
computation and data

HDFS/PVFS
server

Local FS

MDS Data servers

Hadoop/MapReduce framework

File system extensions API
(org.apache.hadoop.fs.FileSystem)

Apps Apps Apps

PVFS Shim layer

buf map rep

libpvfs libhdfs

to
server

from
client

Java
application

net

HDFS/PVFS
server

Local FS net

to HDFS/PVFS servers

0

50

100

150

write read grep sort Co
m

pl
et

io
n

Ti
m

e
(s

ec
on

ds
)

Benchmark
HDFS Random PVFS Hybrid PVFS Round-Robin

0

200

400

600

800

sampling fof twitter Co
m

pl
et

io
n

Ti
m

e
(s

ec
on

ds
)

Application
HDFS Random PVFS Hybrid PVFS Round-Robin

PVFS Shim responsibilities:
▪ Readahead buffer: reads from PVFS in 4MB requests
▪ File layout: file layout exposed as extended attributes
▪ Replication: triplicates data in one PVFS file

Server
0

(Writer)

Server
1

Server
2

Server
3

Blk
0

Blk
0

Blk
0

Blk
1

Blk
1

Blk
1

Blk
3

Blk
2

Blk
2

Blk
2

Blk
3

Blk
4

Blk
3

Blk
4

Blk
4

Offset

0M

64M

128M

192M

256M

HDFS Random Layout

Server
0

(Writer)

Server
1

Server
2

Server
3Offset

0M

64M

128M

192M

256M

Blk
0

Blk
0

Blk
0

Blk
1

Blk
1

Blk
1

Blk
2

Blk
2

Blk
2

Blk
3

Blk
3

Blk
3

Blk
4

Blk
4

Blk
4

Offset

0M

64M

128M

192M

256M

PVFS Round-robin Layout

Server
0

(Writer)

Server
1

Server
2

Server
3

Blk
0

Blk
0

Blk
0

Blk
1

Blk
1

Blk
1

Blk
2

Blk
2

Blk
2

Blk
3

Blk
3

Blk
4

Blk
3

Blk
4

Blk
4

Offset

0M

64M

128M

192M

256M

PVFS Hybrid Layout

▪ [Left] HDFS performance is limited by head-of-line blocking when
creating file while the disk is busy flushing write-back buffer

▪ [Right] HDFS pipelined replication improves parallelism and
resource utilization

0

500

1,000

1,500

2,000

2,500

0 5 10 15 20 25 30 35 40 45 50

A
gg

re
ga

te
 w

ri
te

 th
ro

ug
hp

ut
 (M

B/
s)

Number of clients

N clients write N 1GB les (Disk)

HDFS Random PVFS Hybrid
PVFS Round-Robin

0

1,000

2,000

3,000

4,000

5,000

0 5 10 15 20 25 30 35 40 45 50

A
gg

re
ga

te
 w

ri
te

 th
ro

ug
hp

ut
 (M

B/
s)

Number of clients

N Clients write N 1GB les (TmpFS)

HDFS Random PVFS Hybrid
PVFS Round-Robin PVFS Hybrid (4 streams)

Acknowledgements: Robert Chansler, Tsz Wo Sze,
Nathan Roberts, Bin Fu, and Brendan Meeder

