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The “Deeply Embedded” Classification Problem

Synopsis: As we become engulfed by smart embedded devices
which work together to sense and infer their environment, we
require a better understanding of how to quantify the

classification error made when combining a set of conditionally

independent classifiers, each of which has an unknown error
rate.

Why quantify the error?
" Allows us to combine multiple devices in a principled way
" Allows us to calculate expected utility to make useful actions.
Why assume conditional independence?
" Each device is predicting the same state of the world, so they are
marginally dependent.
" Each device typically operates on a distinct data stream, so
conditionally independence seems reasonable.
Why assume an unknown error rate?
" Actual environment may differ from testing environment
=" Some devices may be broken or gaming the system.

Application: First-Person Sensing
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Combine location, motion patterns, attention
for recognizing behaviors, interest, intention, and anomalies

Interesting problems combining FP vision, speech + acceleration
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Collaborative First-Person Sensing
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Unsupervised Error Bounds

Given N black-box classifiers with unknown accuracy, estimate
the error of a joint classification.

Assuming conditional independence:
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One Idea: Use marginal probability of class state
(Donmez, et al., 2010):
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Another Idea: Use classifier agreement rate

E.g., consider 2 conditionally independent binary classifiers

Assume: 0<9<1
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Let 0;, = P(y; = y|Y = y) and Oiy = P(y; = y|Y =y)
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If known = constrained
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Assuming K classifiers with balanced error: Qiy — U

One can derive the loose bound: 4, > 1

The loose bound can be
tightened further by
integrating over the

constrained area with
uniform priors: ol

The region where the #;-6> surface lies below the 0 = 0.1 plane.
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