DISKREDUCE: RAIDING THE CLOUD - ENCODING OPTIONS AND RELIABILITY

Bin Fan, Wittawat Tantisiriroj, Lin Xiao, Garth Gibson (CMU)

IMMEDIATE VS. BACKGROUND ENCODING

Immediate encoding:

- + Efficient
- Complex: Handling failures on critical path

Background encoding:

- + Simple & no change in client code
- + Cache young data for higher read bandwidth

PROTOTYPE

Less efficient

PERFORMANCE IMPLICATION

75GB dataset written by N clients (1 file each) with 1 or 3 copies

- Note first copy stays in writing node's disk
- Hotspots benefit from replication

Treat triplicated data as a cache:

 Locality: about 90% of data blocks are accessed within 1st day after creation in M45 & DW and 50% in cluster A

1	- Reduce Phase - Construct metadata	meta- data files				reconstru	uction
	MapRed	doL aon	I	را	Java Li	brary	

- The prototype is built as a tool and a client library
 - Tool (Mapreduce): encode a directory into RAID sets or repair corrupted files
 - Library: detect and correct missing data while reading
- Released as Mapreduce-2036 patch for HDFS 0.22.0
 @ http://issues.apache.org/jira/browse/MAPREDUCE-2036
- 60 nodes (two quad-core 2.83GHz Xeon, 16GB memory, four 7200 rpm SATA 1TB disks, 10 Gigabit Ethernet)
- Dataset: 240GB (3,840 files, each 64MB in size)

Operation	Throughput GB/s(stdev)	Disk I/O GB/s (stdev)
Write(Triplication)	1.93(0.06)	5.80(0.18)
Encode(RAID6 8+2)	3.69(0.34)	4.61(0.43)
Repair	0.23(0.02)	2.09(0.19)

Encoding is fast but reconstruction needs improvement

 Even with hotspot, most accesses can get benefit from replication if encoding deferred by 1 day

APPLICATION PERFORMANCE

- Sampling (B. Fu): Read 150GB astronomy data-set
- Twitter (B. Meeder): Reformat 24GB dataset to 56GB
- Sort: sort 128GB dataset

The time each application takes when input dataset are

RELIABILITY MODELING

We expect Triplication to be more reliable than RAID6

- Time to fail/repair model is exponentially distributed,
 2% annual failure rate
- 1TB/disk 80% full, 64MB/chunk, 8+2, 25MB/s/disk repair
- Compare bytes lost per year as a function of total sizes
- Orders of magnitude difference is still only a few bytes/year

triplicated or encoded are comparable.

- 20% slow down if encoding is done during busy time
- Or need at least 20% of idle time

Interaction of parallel repair and detection delay

- With instant detection, surprisingly scalable repair improves reliability with scale
- With more common delayed detection, unsurprisingly scalable repair less effective

