
MANAGING INTER-SERVICE PERFORMANCE DEPENDENCIES 
Elie Krevat, Greg Ganger (CMU)

OVERVIEW SHARED SERVICE DEPENDENCIES

APPLYING RESOURCES GETTING STARTED

INITIAL APPROACH END-TO-END TRACES

▪ Many services are composed of other services
▪ Downstream service delays have cascading effects
▪ High-level service may need faster response
▪ Goal: Automatically identify + mitigate issues 

▪ Dependencies exist with downstream services
▪ Managed by separate teams
▪ Respond to requests from multiple services

▪ Find bottleneck service from end-to-end trace
▪ Evaluate potential gain

▪ Extract critical path from trace analysis
▪ Analyze frequency & distribution of responses
▪ Inspect measured CPU/disk/net utilizations

▪ Apply resources 

▪ Tracks flow of requests through system
▪ Low overhead when sampling requests
▪ Usage is growing (e.g., Google Dapper)
▪ Can expose inter-service dependencies & effects 

▪ Idyllic model: Per-client service levels (SLAs)
▪ Each service negotiates own contract
▪ Renegotiate, if downstream too slow
▪ Downstream service figures out how

▪ Alternative model: Fixed global perf targets
▪ Option #1: Request global target increase
▪ Option #2: Run dedicated instance locally
▪ Option #3: "Lend" priority to bottleneck service

▪ Refining expectations re:
▪ Inter-service performance dependencies
▪ How service levels are managed
▪ Options for applying resources

▪ Needed: traces, case studies, anecdotes 

Hadoop
HBase

HDFS

Load 
Balancer Service

Client

Shared ServicesService 2ServicesServices

200ms

Process 
Response

50ms

Receive 
Request

Spell 
Check

100μs

Avg Response-time:
251ms

Ads Search

Ranker/
Page Gen

1ms1ms

50ms 200ms

(Very) simplified 
search example:


