dBUG: SYSTEMATIC TESTING OF DISTRIBUTED AND MULTI-THREADED SYSTEMS

Jiri Simsa, Garth Gibson, Randy Bryant (CMU)

PROBLEM SETUP BACKGROUND: PROVING CORRECTNESS

= HPC computing speed grows 2X per year * Model checking tools in use:
» Disk bandwidth grows only 20% per year MaceMC, SLAM, HAVOC, Terminator, SPIN, Slayer, ...
 Random access rate grows only 7% per year * No one-fits-all tool
= As aresult, parallel FSs grow in: » Typical limitations:
» Disks, parallelism, prefetching, delaying = Limited range of properties / language constructs
* Implementing and stabilizing more complex code at HPC * Manual effort to annotate / specify / verify required
scales is harder each year * Proves correctness under assumptions
Bocd momaearermams oo

Memory
TeraBytes O

o BACKGROUND: BUG FINDING

App . . .
peformance~ ® Concrete / Symbolic execution tools in use:

 MoDist, KLEE, eXplode, DART, VeriSoft, ...
» Execute real code in a test harness
* Typical limitations:
Metadata o« » .
inserts/sec » Under-constraining environment
Network Speed _ o .
Sigabislsee = Limited ability to setup test cases

Gigabytes/sec

CASE STUDY: CONCURRENT WEB PROXIES CASE STUDY: SYSTEMATIC TESTING OF STASIS

* |n 15-213 students implement proxy as their final lab = Stasis is a flexible transactional storage system
» dBug was used to analyze Fall 2010 submissions = dBug was used to systematically enumerate ways in which
= dBug worked correctly with all 80 proxies that passed Stasis unit tests can execute
sequential checks * Driving Stasis unit tests through dBug resulted in 10-20x
» dBug found concurrency errors in 25 of them overhead
* Independent code inspection by course staff found only 5 of * A number of errors related to incorrect usage of shared
these errors resource was found

= As an on-going work dBug is being used to establish
correctness of Stasis implementation of the ARIES protocol

dBUG APPROACH: DESIGN & IMPLEMENTATION

Original Distributed System

r \
| |
| |
| |
| I
C |
Application Application : Ulirsre. Ulnlrssel 1 }I
'Y
VT . e @ @ @ @ @ @ ® ® @ ® ® 4 i . e - —‘\
—: > | dBug interposition | : dBug client dBug client |
- | ~ dBug - |
OS + Libraries OS + Libraries : :
| \ _
————————————————— —————————————————— : dBug server :
|
: : |
Avoid annotation of source code by | dBug arbiter :
interposing on popular library interfaces : :
|
)

— — — — — — — — — — — — @ —— @—m @ —m @ — @ a— @ a— @ a—m @ a— @ a— @ a— @ a—m @ a—— @ a— @ a— @ a—m @ a—m @a—m @ a—m @a— la— am—

Use centralized arbiter to control execution
order of concurrent events

Through arbiter scheduling, systematically
explore different execution orders

[F pds arnegie Gegrléggﬁ@ “tal)

University

R NGRS UC Berkeley.

Intel Science & Technology
Center for Cloud Computing

—

