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PROBLEM SETUP BACKGROUND: PROVING CORRECTNESS

= HPC computing speed grows 2X per year * Model checking tools in use:
» Disk bandwidth grows only 20% per year  MaceMC, SLAM, HAVOC, Terminator, SPIN, Slayer, ...
 Random access rate grows only 7% per year * No one-fits-all tool
= As aresult, parallel FSs grow in: » Typical limitations:
» Disks, parallelism, prefetching, delaying = Limited range of properties / language constructs
* Implementing and stabilizing more complex code at HPC * Manual effort to annotate / specify / verify required
scales is harder each year * Proves correctness under assumptions
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o BACKGROUND: BUG FINDING
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peformance~ ® Concrete / Symbolic execution tools in use:

 MoDist, KLEE, eXplode, DART, VeriSoft, ...
» Execute real code in a test harness
* Typical limitations:
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CASE STUDY: CONCURRENT WEB PROXIES  CASE STUDY: SYSTEMATIC TESTING OF STASIS

* |n 15-213 students implement proxy as their final lab = Stasis is a flexible transactional storage system
» dBug was used to analyze Fall 2010 submissions = dBug was used to systematically enumerate ways in which
= dBug worked correctly with all 80 proxies that passed Stasis unit tests can execute
sequential checks * Driving Stasis unit tests through dBug resulted in 10-20x
» dBug found concurrency errors in 25 of them overhead
* Independent code inspection by course staff found only 5 of * A number of errors related to incorrect usage of shared
these errors resource was found

= As an on-going work dBug is being used to establish
correctness of Stasis implementation of the ARIES protocol

dBUG APPROACH: DESIGN & IMPLEMENTATION
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Use centralized arbiter to control execution
order of concurrent events

Through arbiter scheduling, systematically
explore different execution orders
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