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PROBLEM SETUP BACKGROUND: PROVING CORRECTNESS

CASE STUDY: CONCURRENT WEB PROXIES CASE STUDY: SYSTEMATIC TESTING OF STASIS

dBUG APPROACH: DESIGN & IMPLEMENTATION

BACKGROUND: BUG FINDING

▪ In 15-213 students implement proxy as their final lab
▪ dBug was used to analyze Fall 2010 submissions
▪ dBug worked correctly with all 80 proxies that passed 

sequential checks
▪ dBug found concurrency errors in 25 of them
▪ Independent code inspection by course staff found only 5 of 

these errors

▪ HPC computing speed grows 2X per year 
▪ Disk bandwidth grows only 20% per year 
▪ Random access rate grows only 7% per year
▪ As a result, parallel FSs grow in:
 ▪ Disks, parallelism, prefetching, delaying
▪ Implementing and stabilizing more complex code at HPC 

scales is harder each year

▪ Concrete / Symbolic execution tools in use:
▪ MoDist, KLEE, eXplode, DART, VeriSoft, ...

▪ Execute real code in a test harness
▪ Typical limitations:

▪ Under-constraining environment
▪ Limited ability to setup test cases

▪ Stasis is a flexible transactional storage system
▪ dBug was used to systematically enumerate ways in which 

Stasis unit tests can execute
▪ Driving Stasis unit tests through dBug resulted in 10-20x 

overhead
▪ A number of errors related to incorrect usage of shared 

resource was found
▪ As an on-going work dBug is being used to establish 

correctness of Stasis implementation of the ARIES protocol
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▪ Model checking tools in use:
▪ MaceMC, SLAM, HAVOC, Terminator, SPIN, Slayer, ...

▪ No one-fits-all tool
▪ Typical limitations:

▪ Limited range of properties / language constructs
▪ Manual effort to annotate / specify / verify required
▪ Proves correctness under assumptions
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Avoid annotation of source code by 
interposing on popular library interfaces

Use centralized arbiter to control execution 
order of concurrent events

Through arbiter scheduling, systematically 
explore different execution orders


