
dBUG: SYSTEMATIC TESTING OF DISTRIBUTED AND MULTI-THREADED SYSTEMS
Jiri Simsa, Garth Gibson, Randy Bryant (CMU)

PROBLEM SETUP BACKGROUND: PROVING CORRECTNESS

CASE STUDY: CONCURRENT WEB PROXIES CASE STUDY: SYSTEMATIC TESTING OF STASIS

dBUG APPROACH: DESIGN & IMPLEMENTATION

BACKGROUND: BUG FINDING

▪ In 15-213 students implement proxy as their final lab
▪ dBug was used to analyze Fall 2010 submissions
▪ dBug worked correctly with all 80 proxies that passed

sequential checks
▪ dBug found concurrency errors in 25 of them
▪ Independent code inspection by course staff found only 5 of

these errors

▪ HPC computing speed grows 2X per year
▪ Disk bandwidth grows only 20% per year
▪ Random access rate grows only 7% per year
▪ As a result, parallel FSs grow in:
 ▪ Disks, parallelism, prefetching, delaying
▪ Implementing and stabilizing more complex code at HPC

scales is harder each year

▪ Concrete / Symbolic execution tools in use:
▪ MoDist, KLEE, eXplode, DART, VeriSoft, ...

▪ Execute real code in a test harness
▪ Typical limitations:

▪ Under-constraining environment
▪ Limited ability to setup test cases

▪ Stasis is a flexible transactional storage system
▪ dBug was used to systematically enumerate ways in which

Stasis unit tests can execute
▪ Driving Stasis unit tests through dBug resulted in 10-20x

overhead
▪ A number of errors related to incorrect usage of shared

resource was found
▪ As an on-going work dBug is being used to establish

correctness of Stasis implementation of the ARIES protocol

App
Performance

Computing Speed

Parallel
I/O

Network Speed

Memory

Archival
Storage

FLOP/s

Gigabytes/sec

GigaBytes/sec

Gigabits/sec

1 10 10
1011

1012

1013

0.05

0.5

5
TeraBytes 50

0.01

0.1

101

0.1
1

10100

8

800
80

0.8

‘96
‘97

‘00

2003
Year

102

Disk
TeraBytes 2.525

2502500

Metadata
Inserts/sec

50
100

1000

103 5
1011

1012

1013

1014

0.05

0.5

5

50

0.01

0.1

10

10.1
1

10

8

800

80

0.8

‘96
‘97

‘00

102
2.525

250

50
100

500

1

▪ Model checking tools in use:
▪ MaceMC, SLAM, HAVOC, Terminator, SPIN, Slayer, ...

▪ No one-fits-all tool
▪ Typical limitations:

▪ Limited range of properties / language constructs
▪ Manual effort to annotate / specify / verify required
▪ Proves correctness under assumptions

Application

OS + Libraries

Application

OS + Libraries

dBug interposition

dBug

Original Distributed System

dBug arbiter

Thread 1

dBug client

Thread n

dBug client

. . .

dBug server

dBug

Original Distributed System

dBug arbiter

Thread 1

dBug client

Thread n

dBug client

. . .

dBug server

dBug explorer

dBug

Original Distributed System

dBug arbiter

Thread 1

dBug client

Thread n

dBug client

. . .

dBug server

dBug

Original Distributed System

dBug arbiter

Thread 1

dBug client

Thread n

dBug client

. . .

dBug server

dBug

Original Distributed System

dBug arbiter

Thread 1

dBug client

Thread n

dBug client

. . .

dBug server

Avoid annotation of source code by
interposing on popular library interfaces

Use centralized arbiter to control execution
order of concurrent events

Through arbiter scheduling, systematically
explore different execution orders

