
SCALABLE CAUSAL CONSISTENCY FOR WIDE-AREA STORAGE WITH COPS
Wyatt Lloyd (Princeton), Michael J. Freedman (Princeton), Michael Kaminsky (Intel Labs), David G. Andersen (CMU)

MOTIVATION
 Distributed data stores support
 complex online applications
 e.g. social networks

 Theory constrains properties
 CAP Theorem
 Seq Consistency || Low Latency

 Most practical systems adopt
 eventual consistency
 Complicates application logic
 Exposes inconsistencies to users

CAUSAL+ CONSISTENCY
 Causal consistency
 Related ops appear in the correct order

 Plus convergent conflict handling
 Conflicting puts are handled identically in each DC

 Spectrum of Consistency Models:

Linearizability > Seq. > Causal+ > Causal > FIFO
> PK Seq. > Eventual (Impossible with ALPS)

CAUSAL+ EXAMPLES
1) Alice uploads photo
2) Alice adds photo to album

Causal+: Referential integrity.
 Photo always exists
 before album.

Eventual: Broken reference in
 album is possible.

A) Carol sets coffee.time = 8am
B) Dave sets coffee.time = 10am

Causal+: One time will be agreed
 upon. Either 8am, 10am,
 or something fancier.

Causal: Forever divergent times
 are possible.

CLUSTERS OF ORDER PRESERVING SERVERS

Client Library
 Interface hides complexity
 from programmer
 Calls include a context that
 tracks causality
 Get transactions provide a
 consistent view of multiple
 keys, even from diff. nodes

IDEAL PROPERTIES

 Availability
 Low Latency
 Partition Tolerance
 Scalability
 Stronger Consistency

 Systems with the first four
 properties are ALPS systems

Clients Data Store Cluster

Wide-Area
Replication

Datacenter

Datacenter

Datacenter

Key-Value Store
 Client ops are local, replication occurs in the background
 Provides availability, low latency, partition tolerance

 Lamport timestamps version writes
 Used to enable get transactions and in the default
 last-writer-wins conflict handler

 Put_after and dep_check operations order
 replication between clusters and nodes
 Provides causal consistency

Challenges
 Minimize space footprint
 Garbage collect old state

 Minimize overhead of
 consistent replication
 Leverage transitivity of
 causality

 Ensure fast get transactions:
 Worst-case 2 rounds under
 concurrent writes
 Get_by_version

Implementation
Built on top of FAWN-KV
~13,000 LOC
Latency < 1ms
Throughput similar to
 weaker systems
Scales linearly

Eventual
Consistency

	Slide Number 1

