
SCALABLE CAUSAL CONSISTENCY FOR WIDE-AREA STORAGE WITH COPS
Wyatt Lloyd (Princeton), Michael J. Freedman (Princeton), Michael Kaminsky (Intel Labs), David G. Andersen (CMU)

MOTIVATION
 Distributed data stores support
 complex online applications
 e.g. social networks

 Theory constrains properties
 CAP Theorem
 Seq Consistency || Low Latency

 Most practical systems adopt
 eventual consistency
 Complicates application logic
 Exposes inconsistencies to users

CAUSAL+ CONSISTENCY
 Causal consistency
 Related ops appear in the correct order

 Plus convergent conflict handling
 Conflicting puts are handled identically in each DC

 Spectrum of Consistency Models:

Linearizability > Seq. > Causal+ > Causal > FIFO
> PK Seq. > Eventual (Impossible with ALPS)

CAUSAL+ EXAMPLES
1) Alice uploads photo
2) Alice adds photo to album

Causal+: Referential integrity.
 Photo always exists
 before album.

Eventual: Broken reference in
 album is possible.

A) Carol sets coffee.time = 8am
B) Dave sets coffee.time = 10am

Causal+: One time will be agreed
 upon. Either 8am, 10am,
 or something fancier.

Causal: Forever divergent times
 are possible.

CLUSTERS OF ORDER PRESERVING SERVERS

Client Library
 Interface hides complexity
 from programmer
 Calls include a context that
 tracks causality
 Get transactions provide a
 consistent view of multiple
 keys, even from diff. nodes

IDEAL PROPERTIES

 Availability
 Low Latency
 Partition Tolerance
 Scalability
 Stronger Consistency

 Systems with the first four
 properties are ALPS systems

Clients Data Store Cluster

Wide-Area
Replication

Datacenter

Datacenter

Datacenter

Key-Value Store
 Client ops are local, replication occurs in the background
 Provides availability, low latency, partition tolerance

 Lamport timestamps version writes
 Used to enable get transactions and in the default
 last-writer-wins conflict handler

 Put_after and dep_check operations order
 replication between clusters and nodes
 Provides causal consistency

Challenges
 Minimize space footprint
 Garbage collect old state

 Minimize overhead of
 consistent replication
 Leverage transitivity of
 causality

 Ensure fast get transactions:
 Worst-case 2 rounds under
 concurrent writes
 Get_by_version

Implementation
Built on top of FAWN-KV
~13,000 LOC
Latency < 1ms
Throughput similar to
 weaker systems
Scales linearly

Eventual
Consistency

	Slide Number 1

