Motivation

- Distributed data stores support complex online applications
 - e.g. social networks

- Theory constrains properties
 - CAP Theorem
 - Seq Consistency || Low Latency

- Most practical systems adopt eventual consistency
 - Complicates application logic
 - Exposes inconsistencies to users

Causal+ Consistency

- **Causal** consistency
 - Related ops appear in the correct order

- **Plus** convergent conflict handling
 - Conflicting puts are handled identically in each DC

- Spectrum of Consistency Models:
 - Linearizability > Seq. > Causal+ > Causal > FIFO
 - PK Seq. > Eventual (Impossible with ALPS)

Causal+ Examples

1) Alice uploads photo
2) Alice adds photo to album
A) Carol sets coffee.time = 8am
B) Dave sets coffee.time = 10am

Causal+: Referential integrity. Photo always exists before album.

Eventual: Broken reference in album is possible.

Causal+: One time will be agreed upon. Either 8am, 10am, or something fancier.

Clusters of Order Preserving Servers

- Client Library
 - Interface hides complexity from programmer
 - Calls include a context that tracks causality
 - Get transactions provide a consistent view of multiple keys, even from diff. nodes

- Key-Value Store
 - Client ops are local, replication occurs in the background
 - Provides availability, low latency, partition tolerance
 - Lamport timestamps version writes
 - Used to enable get transactions and in the default last-writer-wins conflict handler
 - Put_after and dep_check operations order replication between clusters and nodes
 - Provides causal consistency

Challenges

- Minimize space footprint
- Garbage collect old state
- Minimize overhead of consistent replication
- Leverage transitivity of causality
- Ensure fast get transactions: Worst-case 2 rounds under concurrent writes
- Get_by_version

Implementation

- Built on top of FAWN-KV
- ~13,000 LOC
- Latency < 1ms
- Throughput similar to weaker systems
- Scales linearly

Ideal Properties

- Availability
- Low Latency
- Partition Tolerance
- Scalability
- Stronger Consistency

- Systems with the first four properties are ALPS systems