
SMALL CACHE, BIG EFFECT: PROVABLE LOAD BALANCING
FOR RANDOMLY PARTITIONED CLUSTER SERVICES

Bin Fan, Hyeontaek Lim, David G. Andersen, Michael Kaminsky* (CMU, *Intel)

GOAL: SCALE SYSTEM THROUGHPUT LINEARLY AS ADDING SERVERS

SMALL CACHE: EFFECTIVE TO ASSIST LOAD BALANCE

EVALUATION: FRONTEND 900K REQ/S; BACKEND 10K REQ/S

Observation:
▪ Load balance is often workload dependent
Example: 85-node FAWN key-value cluster
▪ 10K reqs/sec per node for key lookups
▪ Hash-based partition: nodeID = Hash(key)
▪ Uniformly access keys: tput scales linearly
▪ Biased access: underutilize system capacity
Question:
▪ Can we provide workload-independent load balance?

Query
director

Queries

Backend

cache Backend

Backend

Backend

Popularity based,
small but fast

Client

Skewed workload,
but cache friendly

Unfriendly to cache,
but uniform workload

 0

 200

 400

 600

 800

 1000

 10 20 30 40 50 60 70 80 90 100

O
ve

ra
ll

th
ro

ug
hp

ut
 (K

Q
P

S
)

n: number of nodes

uniform
Zipf (1.01)

adversarial

0

5 KQPS

10 KQPS

x=
10

0

5 KQPS

10 KQPS

x=
10

0

0

5 KQPS

10 KQPS

x=
10

00
0

0

5 KQPS

10 KQPS

x=
10

00
00

0

 0

 200

 400

 600

 800

 1000

 10 20 30 40 50 60 70 80 90 100

O
ve

ra
ll

th
ro

ug
hp

ut
 (K

Q
P

S
)

n: number of nodes

uniform
Zipf (1.01)

adversarial 300

 400

 500

 600

 700

 800

 900

 100 1000 10000 100000

worst case
theory bound

Work distribution w/o cache
▪ x: working set size

Larger working set yields better
balanced load

Architecture

Requirement
▪ Hash-based service partition
▪ Service partition opaque to clients
▪ Cacheable queries

Intuitition:

Major Result:
▪ If cache size = k * n * log n,

tput > (1-ɛ) * total capacity, regardless of workload
and total number of items
▪ n: # nodes,
▪ k: a small and tunable constant factor

Analytical vs Empirical
▪ number nodes = 85

Analytical bound is accurate

Scalability w/ cache
▪ cachesize = 8 n logn

Worst case tput very close to
uniform case

