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GOAL: SCALE SYSTEM THROUGHPUT LINEARLY AS ADDING SERVERS

SMALL CACHE: EFFECTIVE TO ASSIST LOAD BALANCE

EVALUATION: FRONTEND 900K REQ/S; BACKEND 10K REQ/S

Observation:
▪ Load balance is often workload dependent
Example: 85-node FAWN key-value cluster
▪ 10K reqs/sec per node for key lookups
▪ Hash-based partition: nodeID = Hash(key)
▪ Uniformly access keys: tput scales linearly
▪ Biased access: underutilize system capacity
Question:
▪ Can we provide workload-independent load balance?
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Work distribution w/o cache
▪ x: working set size

Larger working set yields better 
balanced load

Architecture

Requirement
▪ Hash-based service partition
▪ Service partition opaque to clients
▪ Cacheable queries

Intuitition:

Major Result:
▪ If cache size = k * n * log n, 

tput > (1-ɛ) * total capacity, regardless of workload 
and total number of items
▪ n: # nodes, 
▪ k: a small and tunable constant factor

Analytical vs Empirical
▪ number nodes = 85

Analytical bound is accurate

Scalability w/ cache
▪ cachesize = 8 n logn

Worst case tput very close to 
uniform case


