
PLFS/HDFS: HPC APPLICATIONS ON CLOUD STORAGE
Chuck Cranor, Milo Polte, Garth Gibson (CMU)

PROBLEM PARALLEL LOG STRUCTURED FILESYSTEM (PLFS)

PLFS-HDFS ARCHITECTURE

API ISSUES

PLATFORM ISSUES

PRELIMINARY PERFORMANCE RESULTS

▪ Parallel High Performance Computing (HPC) applications
checkpoint progress to a single shared file on a networked
filesystem

▪ The filesystem must:
▪ Make newly created checkpoint files visible on all nodes at

file creation time
▪ Allow nodes to have concurrent write access at varying

offsets to the checkpoint file
▪ Cloud storage systems such as the Hadoop File Systems (HDFS) are

optimized for cloud-based applications such as Map Reduce
▪ POSIX I/O semantics are relaxed to improve performance:

▪ Only one node can have a file open for writing at a time
▪ All writes are append-only

▪ Storage resources allocated to HDFS cloud storage cannot be
used by HPC applications for N-1 checkpointing

PLFS PLFS PLFS

Node 1 Node 2 Node 3

Concurrent HPC
Application

Writers

PLFS Virtualized File View

HDFS storage
(tri-replicated)

HPC APP ON PLFS-HDFS

▪ FUSE or MPI-based filesystem that converts N-1 checkpointing
to N-N checkpointing by breaking each node's write operations
out into a log file
▪ Improves HPC checkpoint performance by avoiding

underlying filesystem bottlenecks
▪ PLFS's log structured writes fit the filesystem semantics

provided by the HDFS cloud storage system
▪ If PLFS could write its logs to HDFS, it could provide N-1 checkpoint

semantics for HPC applications using HDFS for storage

▪ Insert new I/O store layer into PLFS
▪ POSIX I/O store module provides traditional interface to PLFS

backing store
▪ New HDFS I/O store module uses libhdfs API to store and

access logs
▪ Hadoop's libhdfs uses Java Native Interface (JNI) to provide

C/C++ access to HDFS Java methods
▪ Links a Java Virtual Machine into PLFS

▪ Must map PLFS I/O calls to either POSIX or HDFS I/O store
modules, 3 cases:
1. Direct mapping: read maps to hdfsPread()
2. Mapping with minor adjustments

▪ POSIX file descriptor to hdfsFile handle structure
▪ Owner/group int ids vs. owner/group strings
▪ POSIX file/dir creation API sets permissions too, HDFS does not

3. Not possible (device files, symbolic links)

▪ libhdfs does not work in a child process after a fork
▪ PLFS creates new threads for each I/O operation, this causes a

Java memory leak
▪ HDFS concurrency bugs exposed by using it in new ways
▪ Difficult to debug due to multiple domain crossings,
 e.g. write: application → kernel → FUSE daemon → JVM →

HDFS daemon

▪ Extra overhead of Java vs. HDFS optimizations
▪ Initial testing: 5 node cluster on Marmot PRObE cluster

▪ 1.6GHz AMD Opteron dual processor, 16GB memory, Gigabit
Ethernet

▪ Hadoop HDFS 0.21.0, FUSE 2.8, PLFS, OrangeFS 2.8.4 (PVFS)
▪ LANL test_fs N-1 checkpoint benchmark with 47001 byte objects

▪ Will scale up size of benchmark once more Marmot nodes are ready
▪ 4 test cases:

▪ PVFS alone, using the Linux kernel module
▪ PLFS over PVFS
▪ PLFS over HDFS

with 3 way replication
▪ PLFS over HDFS

without replication

API calls

PLFS MPIIO

libplfs

hdfs.jar

HDFS

libhdfs

Java code

libjvm
POSIX libc

mounted fs
(e.g. PanFS, PVFS)

PLFS container

new I/O store API

I/O Store
POSIX HDFS

I/O Store

PLFS FUSE

platform

PVFS
PLFS-on-PVFS
PLFS-on-HDFS
replication=1
perlication=3

read

73.7
63.0

281
76.8

write

94.9
65.7

242
71.9

Mbytes/s
Mbytes/s

Mbytes/s
Mbytes/s

