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SINGLE METADATA SERVER LIMITATIONS WHY USE SCALABLE DB?

OUR GOALS

ROW KEY SCHEMAS

OPENCLOUD METADATA OPERATION STATS INTERESTING CHALLENGES

▪ Increase metadata operation throughput
 ▪ Use multiple servers and avoid hot spot
▪ Low latency
 ▪ When metadata fit in memory, as low as single server
▪ High availability and fault tolerance
▪ Explore tradeoffs for solving metadata bottleneck with  
 table stores
 ▪ Characterize table store features and implementations 
  capable for scalable metadata service

▪ Benefits:
▪ Use multiple machines’ CPU, memory, disks
▪ Support backend storage with disks
▪ Powerful and flexible DB code already exists

▪ Risks:
▪ One RPC to NN may end up being many RPCs

▪ Data in NN’s memory will be spread out
▪ Longer latency because of disk accesses
▪ Longer code path with unneeded functionality

▪ Trade-offs in file metadata table schema
▪ Optimization for group operations such as rename a 

directory could hurt a lookup operation
▪ Indirection causes more lookups than full pathname

▪ Maximizing locality leads to load imbalance
▪ Use data duplication to optimize for different access 

patterns
▪ Columnar store

▪ Locality group based on access pattern
▪ Reduce clean up work such as major compactions

▪ Reduce latency caused by distributing metadata
▪ Collocate processes with tablet server

▪ Coprocessor in HBase, iterator in Accumulo
▪ Send requests in parallel
▪ Aggressive caching is feasible if clients can tolerate 

temporary outdated data
▪ Efficient use of memory

▪ Memory overhead compared to customized service
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OpenCloud namenode operation type distribution 
(2.4 billion operations in total - over two years) 
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OpenCloud namenode operations 
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▪ open() is dominant operation
▪ Most list operations only involve a few files
▪ Path name length is mostly 5-10

▪ May want to reduce iterative lookups for each path name 
component

▪ DB fetch brings in multiple rows
▪ So, what access patterns use the rest of each fetch?

▪ B-tree sorts on:
▪ Full path name
 + one table lookup for each file
 -  locality for whole subdirectory
 -  rename a directory
▪ Directory depth + full path name
 + locality for every directory
▪ Parent Inode + file name  (Inode + FN)
 -  multiple lookups for each file
 + rename only changes inode
▪ Hash(path name): Better load balance
 + load balanced

▪ Throughput limitations with one node
▪ Metadata operation and block allocation
▪ High rates of metadata operations for small files – 

intensive workloads
▪ Total number of files is limited by memory size

▪ Follow GFS design to simplify and accelerate code path
▪ Easy fix with disk data structures, but much lower throughput
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