OVERCOMING METADATA BOTTLENECKS: SCALABLE HDFS

Lin Xiao, Wittawat Tantisiriroj, Garth Gibson (CMU)

SINGLE METADATA SERVER LIMITATIONS

WHY USE SCALABLE DB?

- Benefits:
 - Use multiple machines' CPU, memory, disks
 - Support backend storage with disks
 - Powerful and flexible DB code already exists
- Risks:
 - One RPC to NN may end up being many RPCs
 - Data in NN's memory will be spread out

- Throughput limitations with one node
 - Metadata operation and block allocation
 - High rates of metadata operations for small files intensive workloads
- Total number of files is limited by memory size
 - Follow GFS design to simplify and accelerate code path
 - Easy fix with disk data structures, but much lower throughput

OUR GOALS

- Increase metadata operation throughput
 - Use multiple servers and avoid hot spot
- Low latency
 - When metadata fit in memory, as low as single server
- High availability and fault tolerance
- Explore tradeoffs for solving metadata bottleneck with table stores

- Longer latency because of disk accesses
- Longer code path with unneeded functionality

ROW KEY SCHEMAS

- DB fetch brings in multiple rows
 - So, what access patterns use the rest of each fetch?
- B-tree sorts on:
 - Full path name
 - + one table lookup for each file
 - locality for whole subdirectory
 - rename a directory
 - Directory depth + full path name
 - + locality for every directory
 - Parent Inode + file name (Inode + FN)
 - multiple lookups for each file
 - + rename only changes inode
 - Hash(path name): Better load balance
- Characterize table store features and implementations capable for scalable metadata service

OPENCLOUD METADATA OPERATION STATS

+ load balanced

INTERESTING CHALLENGES

- Trade-offs in file metadata table schema
 - Optimization for group operations such as rename a directory could hurt a lookup operation
 - Indirection causes more lookups than full pathname
 - Maximizing locality leads to load imbalance
 - Use data duplication to optimize for different access patterns
- Columnar store
 - Locality group based on access pattern
 - Reduce clean up work such as major compactions
- Reduce latency caused by distributing metadata
 - Collocate processes with tablet server
 - Coprocessor in HBase, iterator in Accumulo
 - Send requests in parallel
 - Aggressive caching is feasible if clients can tolerate temporary outdated data

- open() is dominant operation
- Most list operations only involve a few files
- Path name length is mostly 5-10
 - May want to reduce iterative lookups for each path name
 - component

- Efficient use of memory
 - Memory overhead compared to customized service

