
OVERCOMING METADATA BOTTLENECKS: SCALABLE HDFS
Lin Xiao, Wittawat Tantisiriroj, Garth Gibson (CMU)

SINGLE METADATA SERVER LIMITATIONS WHY USE SCALABLE DB?

OUR GOALS

ROW KEY SCHEMAS

OPENCLOUD METADATA OPERATION STATS INTERESTING CHALLENGES

▪ Increase metadata operation throughput
 ▪ Use multiple servers and avoid hot spot
▪ Low latency
 ▪ When metadata fit in memory, as low as single server
▪ High availability and fault tolerance
▪ Explore tradeoffs for solving metadata bottleneck with
 table stores
 ▪ Characterize table store features and implementations
 capable for scalable metadata service

▪ Benefits:
▪ Use multiple machines’ CPU, memory, disks
▪ Support backend storage with disks
▪ Powerful and flexible DB code already exists

▪ Risks:
▪ One RPC to NN may end up being many RPCs

▪ Data in NN’s memory will be spread out
▪ Longer latency because of disk accesses
▪ Longer code path with unneeded functionality

▪ Trade-offs in file metadata table schema
▪ Optimization for group operations such as rename a

directory could hurt a lookup operation
▪ Indirection causes more lookups than full pathname

▪ Maximizing locality leads to load imbalance
▪ Use data duplication to optimize for different access

patterns
▪ Columnar store

▪ Locality group based on access pattern
▪ Reduce clean up work such as major compactions

▪ Reduce latency caused by distributing metadata
▪ Collocate processes with tablet server

▪ Coprocessor in HBase, iterator in Accumulo
▪ Send requests in parallel
▪ Aggressive caching is feasible if clients can tolerate

temporary outdated data
▪ Efficient use of memory

▪ Memory overhead compared to customized service

DataNode

DataNode

DataNode

Client NameNodeaddBlock(src)

Datanodes[]

Blocks
Received
Notification

write 64MB

create(src) In memory metadata

94.9%

0.0%
0.5%
1.0%
1.5%
2.0%
2.5%

open create delete mkdir list rename set Fr
ac

tio
n

of
 th

e
to

ta
l #

of

 o
pe

ra
tio

ns

OpenCloud namenode operation type distribution
(2.4 billion operations in total - over two years)

file
empty dir
non-empty dir

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

C
D

F

of entries per operation

OpenCloud namenode operations

Delete (all-level)
List (1-level)
Rename (all-level)

▪ open() is dominant operation
▪ Most list operations only involve a few files
▪ Path name length is mostly 5-10

▪ May want to reduce iterative lookups for each path name
component

▪ DB fetch brings in multiple rows
▪ So, what access patterns use the rest of each fetch?

▪ B-tree sorts on:
▪ Full path name
 + one table lookup for each file
 - locality for whole subdirectory
 - rename a directory
▪ Directory depth + full path name
 + locality for every directory
▪ Parent Inode + file name (Inode + FN)
 - multiple lookups for each file
 + rename only changes inode
▪ Hash(path name): Better load balance
 + load balanced

▪ Throughput limitations with one node
▪ Metadata operation and block allocation
▪ High rates of metadata operations for small files –

intensive workloads
▪ Total number of files is limited by memory size

▪ Follow GFS design to simplify and accelerate code path
▪ Easy fix with disk data structures, but much lower throughput

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 1 2 3 4 5 6 7 8 9 10 11 12 13

C
D

F

Pathame length (level)

OpenCloud path length distribution

create
delete
listStatus
mkdirs
open
rename

