SEARCH
ISTC-CC NEWSLETTER
RESEARCH HIGHLIGHTS
Ling Liu's SC13 paper "Large Graph Processing Without the Overhead" featured by HPCwire.
ISTC-CC provides a listing of useful benchmarks for cloud computing.
Another list highlighting Open Source Software Releases.
Second GraphLab workshop should be even bigger than the first! GraphLab is a new programming framework for graph-style data analytics.
ISTC-CC Abstract
ArMOR: Defending Against Consistency Model Mismatches in Heterogeneous Architectures
42nd International Symposium on Computer Architecture (ISCA), June 2015.
Daniel Lustig, Caroline Trippel, Michael Pellauer*, Margaret Martonosi
Princeton University
*
NVIDIA Research
Architectural heterogeneity is increasing: numerous products and studies have proven the benefits of combining cores and accelerators with varying ISAs into a single system. However, an underappreciated barrier to unlocking the full potential of heterogeneity is the need to specify and to reconcile differences in memory consistency models across layers of the hardware-software stack and among on-chip components.
This paper presents ArMOR, a framework for specifying, comparing, and translating between memory consistency models. ArMOR defines MOSTs, an architecture-independent and precise format for specifying the semantics of memory ordering requirements such as preserved program order or explicit fences. MOSTs allow any two consistency models to be directly and algorithmically compared, and they help avoid many of the pitfalls of traditional consistency model analysis. As a case study, we use ArMOR to automatically generate translation modules called shims that dynamically translate code compiled for one memory model to execute on hardware implementing a different model.
FULL PAPER: pdf