SEARCH
ISTC-CC NEWSLETTER
RESEARCH HIGHLIGHTS
Ling Liu's SC13 paper "Large Graph Processing Without the Overhead" featured by HPCwire.
ISTC-CC provides a listing of useful benchmarks for cloud computing.
Another list highlighting Open Source Software Releases.
Second GraphLab workshop should be even bigger than the first! GraphLab is a new programming framework for graph-style data analytics.
ISTC-CC Abstract
Reducing Data Loading Bottleneck with Coarse Feature Vectors for Large Scale Learning
BigMine’14, August 2014.
Shingo Takamatsu, Carlos Guestrin*
Sony Corporation
* University of Washington
In large scale learning, disk I/O for data loading is often the runtime bottleneck. We propose a lossy data compression scheme with a fast decompression to reduce disk I/O, allocating fewer than the standard 32 bits for each real value in the data set. We theoretically show that the estimation error induced by the loss in compression decreases exponentially with the number of the bits used per value. Our experiments show the proposed method achieves excellent performance with a small number of bits and substantial speedups during training.
FULL PAPER: pdf