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Abstract—We propose a non-intrusive approach for moni-
toring virtual machines (VMs) in the cloud. At the core of
this approach is a mechanism for selective real-time monitoring
of guest file updates within VM instances. This mechanism is
agentless, requiring no guest VM support. It has low virtual I/0
overhead, low latency for emitting file updates, and a scalable
design. Its central design principle is distributed streaming of
file updates inferred from introspected disk sector writes. The
mechanism, called DS-VMI, enables many system administration
tasks that involve monitoring files to be performed outside VMs.

I. INTRODUCTION
The opaque wall of a VM cleanly separates its host and
guest environments. It isolates each guest from others; it
shields the host from misbehaving guests; it supports safe
and guest-transparent multi-tenancy, consolidation and migra-
tion; it ensures simple physical-to-virtual transformations. VM
opacity is the foundation of trust in public clouds.

But complete opacity can become an unnecessary hin-
drance in a private cloud operated by a single enterprise,
because of the higher level of trust between tenants. In
this context, there is an incentive to centralize monitoring
services such as virus scanning and software auditing. This
would reduce the software management burden on employees,
strengthen enterprise control, and improve compliance with
corporate policies. Providing these services in a non-disruptive
manner, using standardized administrative interfaces that avoid
introducing agents into VMs, would be especially valuable.

An agentless approach to centralizing cloud services has
many benefits. For example, security-sensitive agents that
reside within guests today are rendered useless when their
guest is compromised. If placement of those agents outside
the guest were feasible, it would enhance their value. A
second example relates to log file monitoring, which is often
the only source of troubleshooting insights in a production
system [6, 11, 13]. Today, application-specific log file updates
are not visible outside their VM instance without an in-guest
agent or distributed file system. The market for such agents and
their associated “monitoring-as-a-service” capabilities [25, 36]
exceeded $1 billion as of 2013 [10]. Agentless monitoring of
application-specific log files would simplify the implementa-
tion and operation of such services. A third example involves
proactive configuration and compliance auditing. Today, these

involve periodic scans that delay detection and are vulnerable
to guest compromise. An agentless approach could provide
rapid and reliable cloud-wide detection of misconfigurations.

In this paper, we show how the opaque VM boundary
can be safely and efficiently pierced to allow scalable real-
time observation of guest file system updates. Our approach
is based on a novel distributed streaming VM introspection
technique that can infer file system modifications from sector-
level disk updates in real-time and efficiently stream them
to centralized monitors. This technique operates completely
outside VM instances, and does not require paravirtualization
support, guest modifications, or specific guest configuration.

Our experiments confirm that the performance overhead
of this approach is modest, except for extreme write-intensive
workloads. For those extreme cases, we provide a visibility-
overhead tradeoff that is under the control of a cloud operator.
Using this control, overhead can be limited by trading off
the coverage and granularity of the tracked guest file system
updates. Our results confirm the efficacy of this tradeoff in
meeting desired performance goals.

This paper makes the following contributions:

e It highlights the value of agentless streaming of guest
file system updates and shows how this capability
can be efficiently realized through a new distributed,
streaming variant of classic VM introspection (VMI).

e It shows how to bridge the semantic gap between
virtual disk updates and guest file system updates in
near real-time while preserving eventual consistency.

e It presents the design, implementation and evaluation
of an experimental prototype called Gamma-Ray that
implements agentless streaming of updates for ext 4
in Linux guests and NTFS in Windows guests.

e It demonstrates the value of distributed,
streaming introspection with two interfaces: (1)
cloud-inotify, a selective publish-subscribe file
update monitoring framework; and (2) /cloud, an
externally-mountable, real-time view of guest file
systems. These interfaces are built using Gamma-
Ray and based on real use-case scenarios.
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II. DISTRIBUTED STREAMING VMI

In-VM agent-based systems have drawbacks in environ-
ments where trust between the guest and its host is assumed:
(1) they do not provide a secure view of guest state (the
guest cannot be trusted when compromised); (2) they are often
difficult to configure, OS-specific, and require maintenance
(inside hundreds to thousands of VM instances); and (3) they
consume more resources than is necessary because they are
unaware of each other (n in-VM agents vs. one centralized
instance). To address these issues, we propose moving file-
level monitoring tasks outside the VM guest environment
and into the managed cloud infrastructure. Our solution is
distributed streaming virtual machine introspection (DS-VMI).

Our approach is based on the fact that virtual disks are
emulated hardware. Hence, every disk sector write already
passes through the host system. We transparently clone this
stream to a userspace process on the host. This minimally
interferes with the running VM instances. We only handle file
system updates that are flushed from the VM instances to their
virtual disks because only then do sector writes occur. Updates
that have not been flushed, and therefore represent dirty state
in guest memory, are outside the scope of this paper.

DS-VMI resembles classic VMI [12], with two crucial
differences. First, we support streaming introspection from
instances distributed throughout the cloud. The design of DS-
VMI and its interfaces directly stems from this distributed
setting. Second, instead of performing introspection syn-
chronously, we always perform it asynchronously. We are able
to minimize stalling of the VM during introspection because
our goal is not intrusion detection: we are only monitoring
guest actions, rather than trying to prevent tainted ones.

DS-VMI is challenging to implement for three reasons.
First, there is a semantic gap [9] in mapping disk sector writes
into file system updates. This could arise, for example, because
a file system abstraction such as a directory could be spread
over many sectors on a disk. Second, there is a temporal
gap in collecting a series of seemingly-unrelated writes and
coalescing their effects. For example, the creation of a new
file may involve operations that are widely separated in time,
and separately update the metadata and data portions of a
file system on disk. Third, bounded overhead is an important
operational requirement in a production cloud. This overhead
includes host memory pressure, slowdown of guest writes,
and increased network traffic. Our solutions to the first two
challenges, architecting VMI for the cloud, are described in
Section III. We describe the interfaces Gamma-Ray provides
to applications in Section IV, and an evaluation of overhead
and latency in Section V. We explain optimizations and address
bounded overhead in Section VI. We finish with related work
in Section VIII, and a conclusion in Section IX.

III. DESIGN AND IMPLEMENTATION

We have built an experimental prototype of DS-VMI, called
Gamma-Ray, for the KVM hypervisor [22] using QEMU [3]
for disk emulation. Via custom introspection code, Gamma-
Ray supports commonly-used file systems including ext2,
ext3, and ext4 for Linux guests and NTFS for Windows
guests. For brevity and ease of exposition, we focus our
discussion on ext4 with a single virtual disk per guest.

Gamma-Ray has a three-stage structure. The first stage is
an indexing step, performed once per unique virtual disk (not
needed for clones), for initializing Gamma-Ray. The other
two stages are specific to the runtime of each VM instance
executing in a cloud, as shown in Figure 1. We summarize
these stages below, with details in Sections III-A through III-C:

1) Crawling and indexing virtual disks. (Figure 1a)

This stage generates indexes of file system data struc-
tures via a Disk Crawler. The indexes are generated
live or loaded at instance launch from a central store.

2)  Capture and cloning of disk writes. (Figure 1b)

This stage is implemented via a user-space helper
process called Async Queuer that receives a stream
of write events from a modified QEMU. Normally, it
runs at the hypervisor hosting the VM for low latency.

3) Introspection and translation. (Figure 1c)

In this stage, the Inference Engine interprets sector
writes, reverse-maps them to file system data struc-
tures, and produces a stream of file update events.
It operates either at the hosting hypervisor, or across
the network.

A. Crawling and Indexing Virtual Disks

Gamma-Ray requires a one-time crawl of each virtual disk
before it commences real-time streaming of subsequent file
system updates. This crawl builds a map of the virtual disk for
Gamma-Ray so that it can very quickly infer the file system
objects being modified from incoming sector updates at run-
time. Gamma-Ray supports both crawling offline virtual disks
and dynamically attaching to online, running VM instances.

The offline case typically occurs when a virtual disk is
first added to a cloud. Upon addition of the virtual disk, the
Disk Crawler produces serialized metadata associated with the
virtual disk’s partitions and stores it alongside the virtual disk
in a virtual disk library. It only runs once.

In the online case, Gamma-Ray live-attaches to an already-
running VM. Here, the Disk Crawler crawls and indexes the
virtual disk while it is also being modified by the executing
VM. To handle the transient dirty state and not miss any new
state, the dynamic component of Gamma-Ray, described in
Section III-B, buffers the incoming write stream from the start
of the disk crawl. Once the Disk Crawler finishes indexing,
Gamma-Ray replays the dynamic write stream buffer to obtain
the latest updates since the time of crawling and finally catches
up to the live, real-time write stream updates.

The disk crawler is implemented in C with file system
indexers for ext?2, ext3, ext4, and NTFS. The entire disk
is crawled, and serialized metadata is produced for each active
partition containing a valid file system. The metadata is format-
ted as serialized BSON [5] documents and compressed using
gzip. We chose BSON because it is compact, supports binary
data, has an open specification, and has been successfully used
in scalable systems such as YouTube [16].

Disk analysis starts at the Master Boot Record (MBR) that
contains a partition table. Each entry in this table may point
to a valid primary partition or to a linked list of secondary
partitions. An ext4 partition is analyzed by first examining
and serializing its superblock. The s_last_mounted field
identifies the most recent mount point of this file system, which
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Fig. 1: Three-stage DS-VMI architecture.

helps in recreating pathnames. The superblock points to the
Inode Table, which captures a wealth of information about each
file. In ext4 the “i_block” field is typically the header of
an extent tree. Immediately following the header are pointers
to extents, each of which in turn points to a set of data blocks
for the file. The disk crawler collects and serializes necessary
metadata from all allocated files by walking the inode table
and directory entries. Directory entries are contained in the
data blocks of directories and map file paths to inodes.

The NTFS disk format poses special challenges. In this
format, the Master File Table (MFT) plays a role analogous
to the Inode Table in ext4. It stores File Records, which
are the equivalent of ext4 inodes. However, the MFT itself
is managed as a file and can become fragmented throughout
a disk. The positions of metadata cannot be computed in
advance with simple offsets. In addition, there are proprietary
intricacies that are not documented openly and can only be
inferred via the trial and error process of reverse-engineering.
In spite of these challenges, we have been successful in
creating robust support for NTFS in Gamma-Ray.

B. Efficient Cloning of Disk Sector Writes

KVM sends emulated I/O to QEMU, which is a userspace
emulator. We copy this write stream from QEMU to Gamma-
Ray using QEMU’s tracing framework. This framework is
configured at runtime by providing a list of events to trace. We
extended the framework to include the binary contents of disk
write requests. As Figure 2 shows, our extensions are located
within QEMU’s core, between the layers that communicate
with the guest VM and with the backing storage. This enables
Gamma-Ray to work with any virtual disk format and I/O
protocol supported by QEMU. The write stream is copied to
a pipe by a trace event.

The other end of the pipe is connected to the Async
Queuer, shown in Figure 1b, which collects the write events
and copies them uninterpreted into an in-memory queue for
further processing. The challenge is to minimize I/O stalls on
the write path of the introspected VM. In order to minimize or
eliminate stalls, the Async Queuer must empty the pipe buffer
quicker than the incoming stream of writes. To accomplish this
the Async Queuer processes events as quickly as possible, and
uses double-buffering during flushes to further minimize stalls.

C. Translation to File System Updates

The Inference Engine first retrieves the BSON-serialized
metadata associated with the virtual disk being monitored, de-
compresses it, parses it, and stores it in a Metadata Store either
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Fig. 2: Connecting QEMU to Gamma-Ray.

all at once or lazily (Section VI-B). The Metadata Store queues
sector writes awaiting translation, and also stores metadata
in translation tables for fast lookup. We use Redis [30], an
efficient in-memory key-value store, as our Metadata Store.

Once virtual disk metadata is loaded and the Async Queuer
starts copying raw write events into the Metadata Store,
Gamma-Ray begins processing the write events by translating
the received virtual disk sector writes into actual file system
updates. To achieve this, each VM instance has an associated
Gamma-Ray thread on its host, started alongside the VM.
Since Gamma-Ray runs as a separate multi-threaded Linux
process, it can benefit from multiple cores on the host.

At runtime, disk addresses are reverse-mapped using the
lookup tables in the Metadata Store in order to determine
which file or directory is modified by a disk sector write.
Creations and deletions of files and directories are detected via
inference based on metadata manipulations; this is file-system-
specific and may require monitoring of a journal, inodes, or
other file system data structures. Gamma-Ray stores and main-
tains metadata in a file-system agnostic format, implemented
via multiple Redis keyspaces.

Given a write to an arbitrary position on disk, Gamma-
Ray begins by first identifying if the write is data or metadata.
This is done based on mappings maintained in the Metadata
Store. If a write is data, Gamma-Ray only needs to determine
which file and which bytes within that file were modified.
To reverse-map a write operation to a data block of a file,
Gamma-Ray queries the sector keyspace. To retrieve the
file pathname, Gamma-Ray queries the path keyspace. If any
process registers interest in a path, data writes are passed on.
In the case of metadata, the write is inspected by Gamma-
Ray and appropriate Metadata Store data structures are updated
to maintain correct mappings. For example, the metadata might
indicate creation of a new directory, or truncation of a file.



Channel
gs9671:test:/var/log/*

Monitors

Logs in VM instance test
on host gs9671

Logs on all VM instances
on all hosts

auth.log on all VM
instances on host gs9671
syslog on VM instance
test on host gs9671

TABLE I: Examples of filter specifications.

x:%:/var/log/*

gs9671:x:/var/log/auth.log

gs9671:test:/var/log/syslog

Naively, disk mappings could be maintained at the level of
disk sectors, the smallest unit addressable on disk. However,
it is much more efficient to match the granularity of file
system blocks, because file system block sizes are typically 8-
16 times larger than disk sectors. Thus, Gamma-Ray maintains
mappings at the granularity of file system blocks. In ext 4 the
block size is derived from the superblock. For NTFS, block
size comes from the “Boot File.”

IV. INTERFACES TO GAMMA-RAY

We now describe two very different interfaces to Gamma-
Ray layered on top of the Metadata Store. The first, described
in IV-A, provides a publish-subscribe model allowing applica-
tions to selectively track streams of file system updates. The
second, described in IV-B, provides a POSIX file system model
allowing unmodified legacy applications to leverage up-to-date
insights from Gamma-Ray.

A. Selective Monitoring: cloud-inotify

inotify [26] is a Linux kernel notification interface
for local file system events. It provides an API to userspace
applications that lets them register for events such as directory
updates, file modifications, and metadata changes. inotify
has been used to implement desktop search utilities, backup
programs, synchronization tools, log file monitors, and many
more file-level event-driven applications. There are two key
challenges to extending inotify to cloud computing. First,
the file systems being monitored are remote rather than local.
Second, instead of monitoring a single file system at a time,
cloud-level monitoring requires an efficient abstraction for
monitoring thousands of file systems at once.

Gamma-Ray solves both of these challenges with its
cloud-inotify interface. cloud-inotify provides a
network-accessible, publish-subscribe channel abstraction en-
abling selective monitoring of file-level update streams. Ap-
plications “register” for events by connecting to a network
socket and subscribing to channels of interest. Via published
messages, they are notified of individual events and may take
action. We call cloud-inotify applications monitors, and
the cloud—-inotify interface provides a strongly consistent
stream of metadata to monitors.

Monitors are typically application-specific, and each mon-
itor is typically interested only in a small subset of file update
activity in a VM instance. In some cases, a single monitor
may receive file update streams from many VM instances and
thus perform cloud-wide monitoring for a specific application.
In other cases, a monitor may be dedicated to a single VM
instance. A monitor may execute on the same host as an
instance of Gamma-Ray it is receiving updates from, or it may

be located on another machine. A local copy of the monitor
could filter file-level updates from the virtual disk and pass
on important updates to a remote monitor. Cooperating via
Gamma-Ray, local monitors and remote monitors obtain a
consistent view of the file update stream in real-time.

We use the publish-subscribe capability of Redis to imple-
ment Gamma-Ray channels. Gamma-Ray channel names are a
combination of three components: the hostname, a VM name
supplied by a user or derived from a generated UUID, and the
full path of interest in the guest file system of the VM instance.
A monitor connects to Redis’ well-known TCP port and
subscribes to channels using filters similar to those shown in
Table I. The monitor then receives BSON-serialized messages
relevant to its filter specification, each containing the changed
metadata fields and corresponding file data. Monitors subscribe
without exposing themselves to a firehose of irrelevant data.
We consider two use cases below.

Log monitoring: Log files contain insights into the health
of systems and the responsiveness of their applications. An
example of such an insight is response time derived from
web application log files. Sangpetch et al. [31] show that an
application-performance-aware cloud can double its consolida-
tion while lowering response time variance for customer appli-
cations. They measured response time based on network traffic;
however, encrypted flows and applications not tied to network
flows cannot benefit from this feedback loop. Normally, the
opacity of a VM requires resorting to indirect measures such as
inspecting network packets to measure response time. Gamma-
Ray can derive the same metric directly from application logs.

Auditing: Auditing file-level changes is useful for enforc-
ing policy, monitoring for misconfigurations, and watching for
intruders. Unlike agent-based solutions, Gamma-Ray cannot
be turned off, tampered with, or misconfigured by guests.
Centrally-managed auditing ensures that all VMs are checked
for the most recent security updates and best practices. Ex-
ample checks include: proper permission bits on important
folders and files, and monitoring /etc/passwd to detect
new users or modifications to existing users. Google [8]
reported an outage in early 2011 that affected 15-20% of its
production fleet. The root cause was a permissions change
to a folder in the path to the dynamic loader. Google found
troubleshooting difficult because logging into affected servers
was impossible. Gamma-Ray does not depend on guest health;
thus, cloud customers never “fly blind” even if they cannot
access instances.

B. Synthetic File System: /cloud

There are some applications for which an event-driven
model is inappropriate. An example is querying arbitrary
system state such as a log entry from several days ago on a
long-running VM instance. Other examples include scanning a
VM instance for a newly-discovered vulnerability, or checking
for a newly-discovered misconfiguration. To support such use
cases, we provide a complementary interface into Gamma-
Ray — a file system interface called /cloud. Because we
store metadata in a normalized format, we implement /cloud
in a single FUSE driver. Our driver offers a read-only view into
the file systems of any VM instance in a cloud.
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To ensure correctness and a consistent view of guest file
systems for legacy tools, we introduce the notion of metadata
versions. A metadata version is a consistent snapshot of a file’s
metadata. A file has at most two metadata versions: its last
known consistent state and its current, in-flux state. Legacy
applications reading a file or its attributes are presented with
its last known consistent metadata state. Reads of file data go
to the original virtual disk, as shown in Figure 3. Metadata
versions guarantee consistency for metadata, but not data.
Thus, /cloud provides an eventually consistent file system
view of files within executing VMs.

Our read-only file system view is exportable over the
network via Samba or NFS. Administrators can use this
interface to rapidly query log files and configuration state
across multiple instances in a cloud. For example, consider
organizing VM file systems within a hierarchical directory
scheme: /cloud/host/vm/fs/path. Administrators can
leverage familiar legacy tools such as grep, or standard log
monitoring applications such as Splunk [35], to quickly search,
or monitor, subsets of VMs without agents inside those VMs.

Log Monitoring: In the log monitoring example from
Section IV-A, we assumed the insights we want from log files
are already known. In some cases, such as an investigation
following a security breach, we need to re-crawl logs looking
for evidence. Failed password-based ssh logins are normally
indicative of break-in attempts. Using /cloud and grep
we can quickly scan recent logs across all instances to find
password-based failed logins: grep "Failed password"
/cloud/*/x/var/log/auth.log.

Auditing: In the Google example from Section IV-A, we
assumed operators could be notified nearly instantaneously
about misconfigured permission bits. Of course, this can only
occur if they are already being monitored. With /cloud using
familiar commands such as £ind, one can check permissions
across the cloud: find /cloud/*/*/1lib —-maxdepth
0 -not —-perm 755.

V. EVALUATION

In the following sections, we seek to answer the following
questions about Gamma-Ray:

Sec. V-D:How close to real-time is Gamma-Ray?

Sec. V-E: What is the overhead of crawling for, transferring,
and loading metadata?

Sec. V-F: How much slowdown does Gamma-Ray cause in
a running guest?

Sec. V-G:What is the memory footprint of Gamma-Ray?

A. Experimental Setup

All host nodes are identically configured throughout all
of the following experiments. Each machine has a 3.00GHz
Intel Core 2 Duo E8400 CPU and 4 GB RAM and runs
Ubuntu 12.04 LTS AMDG64 Server. We base all of our work
on QEMU release 1.6.0. We use Redis server version 2.2.12
and 1ibhiredis version 0.10.1. For BSON, we use our own
custom implementation in C. Each host has two hard drives:
a primary 250 GB drive (Seagate ST3250310AS) and a sec-
ondary 1.5 TB drive (Seagate ST31500341A). The secondary
drive was used to write and store log files, and the primary
drive hosted the virtual disks. This setup minimized I/O
contention while collecting results from experiments. Unless
otherwise stated, timing experiments were run 20 times and
both the average and standard deviation are reported.

When running a VM, we follow IBM’s KVM best prac-
tices [18]. Both the guest VM and host OS are configured to
use the deadline elevator algorithm for disk I/O scheduling,
the VirtlO paravirtualization solution for I/O communication,
and the async I/O backend native to their host. Before running
a VM, we sync the host and drop all file system caches.
Once the guest VM is booted, we repeat the procedure inside
the guest. We configure and begin executing an experiment
via ssh. VMs are run for a single experiment, then discarded
by deleting their hard drive and replacing it with a pristine
copy. When an experiment begins within a VM guest, we use
a simple Python script to send a single UDP packet to a host
daemon process. This process records a timestamp for the UDP
packet and acts as the timer for experiments within VM guests.
When an experiment finishes, the Python script sends a final
UDP packet to the host daemon process and shuts down. By
using an external clock tied to the host, we reduce the risk of
invalid timing data due to unreliable VM clocks.

We used a single VM guest pre-loaded with all software.
The guest runs Ubuntu 12.04 LTS AMD64 Server, with 1 CPU,
1 GB RAM, 20 GB disk, and a single partition containing
an ext4 file system with default file system options and 2.6
GB of used space. By comparison, in a survey of 30 Amazon
EC2 cloud images, we found an average root disk size of 18
gigabytes, a maximum of 80, and a minimum of 5.

B. Write Intensive Benchmarks

bonnie++ [7] (4.1 GB written) is a microbenchmark tool
designed to measure the overhead of various file system
operations such as create, delete, write, and read. We used
its default settings.

PostMark [21] (2.9 GB written) is a well-known bench-
mark designed to simulate mail server disk I/O. We used it with
a configuration suggested by [37]: file size [512,328072], read
size 4096, write size 4096, number of files 5000, number of
transactions 20, 000.

Modified Andrew Benchmark [17] (277 MB written)
is another well-known benchmark. In the MakeDir phase,
our modified version creates a directory tree mirroring the
linux-3.5.4 kernel tree [24]. In the Copy phase, it copies
the entire source tree, including files, into this directory tree.
The ScanDir phase reads file system metadata for all files
in the tree. The ReadA11 phase reads the contents of all files
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in the tree. Finally, the Make phase compiles the Linux kernel
using a configuration provided by make defconfig.

Software Install (1.9 GB written), inspired by a bench-
mark used in [32], uses Ubuntu’s apt-get tool within the
guest to install a long list of server packages that have been
downloaded in advance. The server packages include Apache,
MySQL, PHP, Ruby, Java application servers, and many others.

C. Gamma-Ray Tunables

In our experiments, the most critical parameters are the
“Async Flush Timeout” (default 5 seconds) and “Async Queue
Size Limit” (default 250 MB). The flush timeout helps bound
the maximum latency from a disk write to an emitted inferred
file-level event on a channel. The queue size limit bounds the
amount of memory that the async queue process may con-
sume. The outstanding write limit (default 16, 384) bounds the
number of writes queued for the inference engine, preventing
it from falling too far behind the guest VM. The “Unknown
Write TTL” (default 300 seconds) defends against denial of
service: if a guest writes a large amount of data, but never
associates it with live files, the data is eventually discarded.

D. Latency for File Monitoring Tasks

To measure latency, we designed a microbenchmark (6.4
MB written) to trace writes from a guest through Gamma-
Ray to a monitoring application. We used an HTTP client to
construct GET requests with headers containing a timestamp
from the host. These requests went to an in-guest Apache web
server serving a static file and were logged by Apache. We
sampled the log file every second via our /cloud interface.
When a new log entry appeared, we timestamped it with the
host’s time and saved it separately.

Figure 4 shows the results of 10,000 requests during the
microbenchmark. Figure 4a shows the best case when the guest
frequently syncs data to disk with an additional latency of 1,
3, or 5 seconds on average. Figure 4b shows an untuned guest
where latency is at the mercy of guest kernel I/O algorithms
which flush at much lower frequency than Gamma-Ray’s
default. The step-like nature is because many updates appear at
once — many log file lines fit inside a single file system block.
Akamai’s system [6] would work on Gamma-Ray without any
tuning of guests, but low latency performance monitoring [31]
may require tuning of guest flush algorithms.

E. Crawling and Bootstrapping

Table II shows how metadata grows as a function of used
disk space for ext 4 and NTFS. We increased used disk space

ext4

Used (GB) | Raw (MB) | gzip (MB) Crawl (s) Load (s)
6.4 64 8.2 20.30 (1.91) | 30.15 (0.15)
8.4 70 9.4 21.43 (2.00) | 35.98 (0.20)
11 77 11 22.25 (1.68) | 41.54 (0.25)
13 83 12 23.20 (1.85) | 47.24 (0.45)
15 90 13 2422 (1.74) | 52.91 (0.43)
17 96 15 25.85 (1.83) | 59.19 (0.43)

NTFS

Used (GB) | Raw (MB) | gzip (MB) Crawl (s) Load (s)
6.9 67 14 17.93 (2.12) | 43.74 (0.20)
8.9 73 15 18.13 (2.01) | 49.58 (0.23)
11 79 16 18.39 (2.26) | 55.10 (0.24)
13 85 18 18.51 (1.85) | 60.60 (0.36)
15 92 19 18.72 (2.01) | 66.21 (0.65)
17 98 20 19.48 (2.47) | 72.68 (0.82)

TABLE II: Metadata as a function of used virtual disk space
(20 runs, std. dev. in parentheses). Used is used disk space
reported by df, Raw is uncompressed metadata, gzip is com-
pressed metadata with gzip —-best, Crawl is the indexing

time, and Load is the load time into Redis.

ext4
inodes Raw (MB) | gzip (MB) Crawl (s) Load (s)
127,786 64 8.2 20.30 (1.91) 30.15 (0.15)
250,000 101 12 21.19 (1.85) 41.53 (0.32)
500,000 178 19 22.52 (1.29) 63.56 (0.29)
750,000 256 27 23.87 (1.68) 85.87 (0.61)
1,000,000 333 35 26.08 (1.75) | 109.68 (0.68)
1,250,000 410 44 27.05 (1.47) 132.12 (0.68)
NTFS
inodes Raw (MB) | gzip (MB) Crawl (s) Load (s)
103,152 67 14 17.93 (2.12) 43.74 (0.20)
250,000 106 16 24.36 (2.64) 58.53 (0.24)
500,000 174 19 34.95 (2.19) 83.02 (0.29)
750,000 242 23 44.04 (2.93) | 108.31 (0.56)
1,000,000 309 26 54.62 (2.65) | 132.96 (0.66)
1,250,000 377 29 63.99 (2.52) | 159.32 (0.45)

TABLE III: Metadata as a function of number of inodes (20
runs, std. dev. in parentheses). The headers are the same as
in Table II except the first column is a unitless count of live
inodes in the file system rather than used disk space.

by writing a single large file with random data inside a virtual
disk. The relationship for both file systems is linear in the used
disk space because we use a canonicalized form of metadata
independent of file system. The raw metadata grows at a rate
of 6-7 megabytes per gigabyte of used disk space, but only
1 megabyte compressed. NTFS crawls are quicker because
its on-disk metadata is more compact and quicker to scan.
Load times are also comparable, but NTFS is slower because
it starts with approximately 500 megabytes more used disk
space. In addition, NTFS often has multiple names for the
same file, further magnifying metadata. Load times are masked
by concurrently loading metadata while the virtual disk is
transferring over the network to its host system. Crawl is a
one-time operation, amortized over the life of a virtual disk.

Table III shows how metadata grows as a function of
live files in ext4 and NTFS. These files were created by
the touch command within a single directory. Once again,
we see a linear relationship for both file systems. The raw
metadata grows at a rate of approximately 323 bytes per file
for ext4 and 285 bytes for NTFS. Compressed, this overhead
drops to approximately 34 bytes per file for ext 4 and 13 bytes
for NTFS. For ext4, the average path length was 32 charac-
ters, and for NTFS, it was 24 characters (1,250,000 cases).
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Fig. 5: Application benchmarks: Stock QEMU is without
modification, Modified is with instrumentation compiled in,
Tracing is with it turned on and sent to /dev/null, and
Inference is full system (20 runs each).
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Paths are stored at least twice: once as a full path associated
with a file, and once as a directory entry. This accounts for
the approximately 20-megabyte increase in metadata size for
ext4 with a large number of files.

E VM Slowdown

Figure 5 shows the time to complete, on average, all four
of our main benchmarking applications. Gamma-Ray shows
overhead in three of the four write benchmarks: bonnie++,
PostMark, and Software Install. We observed an average over-
head of 15% across the more practical application benchmarks,
and a worst case of 120% for the bonnie++ microbenchmark.
This subsection explores why each benchmark has overhead,
and we show how to mitigate overhead in Section VI

Clustered Large Writes. A breakdown of memory usage,
I/O pattern, and async queue flushes for bonnie++ is the
first row in Figure 6. The inference engine shows very little
memory usage. The memory usage of the Async Queuer,
however, repeatedly spikes up and down. This occurs because
bonnie++ is a write-intensive microbenchmark, and the async
queuer, in this case, is regularly hitting its configured queue
size limit of 250MB and flushing to Redis. If flushes were
only triggered by the 5-second writeback timer, this implies a
maximum of 40 flushes (200 second run). However, the right-
most graph shows 53 flushes, 13 triggered by the 250 MB
ceiling. The middle graph confirms: this experiment was the
most write-intensive. Its closely-clustered, intense write pattern
causes the performance degradation.

Small Clustered Writes. PostMark shows similar behavior
as bonnie++; however, its write pattern is more dispersed.
Column 2, row 2 of Figure 6 shows that PostMark has many
smaller clusters of writes. Its async queue memory, although
spiking like bonnie++, does not fill as often. These spikes do
trigger extra flush events, which incur a performance penalty
just as in the bonnie++ case, though on a much smaller scale.
In this case the experiment ran for 231 seconds, resulting in
46 expected and 54 actual flush events.

Low Volume Small Writes. The Modified Andrew Bench-
mark shows negligible overhead when Gamma-Ray is intro-
specting disk writes. This is because the write traffic was
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Fig. 7: Memory usage by Redis for each experiment. Only a

single run was examined.

1000

Experiment | Async Q. (MB) | Inf. Eng. (MB) | w/ Redis (MB)
bonnie++ 250 49 1043
Andrew 88 9 630
PostMark 214 27 739

SW Install 81 26 708

TABLE IV: Peak memory usage of the Async Queuer, infer-
ence engine, and Redis combined.

not sufficient to fill the async queue, and when flushed due
to timeout, the write volume was small enough to avoid any
performance degradation. The write pattern shown in row 3,
column 2 of Figure 6 demonstrates less intense write clustering
compared to PostMark and bonnie++. The Modified Andrew
Benchmark had the fewest writes: 5,293.

High Volume Writes. The Software Install benchmark
has the largest number of writes: 61,694. This benchmark,
although it writes a lot of data, spreads the writes over a long
period of time. There were no large bursts of heavy write
activity and no wild spikes in async queue memory. Even
though it does not trigger extra async queue flushes, however,
it is interrupted too frequently by timer-based flushing. This
effect was sufficient to significantly slow it down.

G. Memory Footprint

Figure 7 shows memory used by Redis during each of the
four experiments, and Table IV shows peak memory usage in
Resident Set Size (RSS) by the inference engine and Async
Queuer combined with Redis.

At startup, the Redis database fills with metadata and the
Async Queuer awaits writes from a booting VM guest. At
this stable point the Async Queuer process uses 652 KB of
memory, the inference engine uses 4096 KB of memory, and
Redis uses 393.23 MB of memory. This combined overhead
is 15% of the used disk space of 2.6 GB.

VI. OPTIMIZATIONS BOUNDING OVERHEAD

In the following sections, we discuss two optimizations
which reduce (1) write overhead, by relaxing completeness
(Section VI-A); and (2) memory footprint (Section VI-B).
These optimizations let an operator configure the performance-
latency-completeness tradeoff inherent to DS-VMI.

A. Overhead vs Completeness Tradeoff

Intense file system activity within a VM instance results
in high transient overhead for inference and streaming, as
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Experiment | File Tree Loaded | Old Peak (MB) | Peak (MB)
bonnie++ 4.7% 1043 766
Andrew 17.2% 630 357
PostMark 5.2% 739 562
SW Install 11.3% 708 533

TABLE V: Lazy loading optimization effect on memory.

evidenced in the bonnie++ benchmark in Section V. We avoid
this by temporarily suppressing observation of the hyperactive
parts of the file tree within that instance while continuing to
fully observe file system activity within other VM instances.
After the intense burst of file system activity passes, full
observation resumes. We describe the most performant policy
for relaxing completeness implemented by Gamma-Ray.

Data Drop: Blocks in a file system can be categorized into
metadata and data. A high write throughput implies that large
quantities of data blocks are being written. If one dropped only
data writes, but still processed metadata writes, one’s view of
the guest file systems would not randomly decay. The only
loss of information occurs when blocks transition from data to
metadata which means they may be prematurely dropped. For
example, directories are often implemented as files with data
streams that list file entries. In this case, a disk introspection
system would be able to detect directories being created, but
not the listing of files within them. It is possible to catch up to
the guest’s view if the guest writes to the transitioned blocks
a second time.

Figure 8 shows all of the benchmarks from Section V
with data dropping enabled. All of the benchmarks with
significant write overhead show improvement. The application-
based benchmarks show a worst case overhead of bonnie++ is
reduced to 39.5%.

B. Lazy Loading of File System Metadata

In Section V-G we found that memory overhead is 15% of
used disk space, when Redis is pre-populated with metadata for
all files in the guest file system. However, during benchmarks,
as well as in expected day-to-day use, only a small fraction of
the file system tree within the guest is modified. Thus, loading
and caching metadata only for recently written files promises
to greatly reduce the memory overhead of our approach.

The results of implementing lazy loading of metadata are
shown in Table V. With this optimization, the startup memory
footprint drops to 4% of used disk space (114 MB instead
of 392 MB), the loading of metadata takes 73% less time (5
seconds in the base case), and peak memory usage drops.

VII. CONSIDERATIONS AND FUTURE WORK

Guest File System Compatibility

To guarantee the correctness of our introspection, the file
system semantics must ensure that incorrect inferences cannot
occur. Such a file system must exhibit “a strong form of reuse
ordering,” as well as metadata consistency [34]. Strong reuse
ordering means that the file system must commit the freed
state of any sector and its allocation data structures to disk
before reuse, and metadata consistency means maintaining all
file system metadata with a set of invariants that ensure correct
operation. Most modern file systems meet these requirements.

Ongoing and Future Work

(a) Storage and VMM Technologies. We are currently working
on support for additional storage technologies including LVM
and btrfs. In parallel with these, we are also investigating
generalizing Gamma-Ray operation to other hypervisors, in
particular, Xen and VMware ESX. Due to its design, Gamma-
Ray itself does not require significant changes; it only needs
access to the virtual disk’s write stream.

(b) Encrypted File Systems or Full Disk Encryption. If the
VM’s disk is encrypted, Gamma-Ray’s ability to provide a
meaningful service is severely curtailed. However, if the owner
of the VM was willing to share encryption keys, Gamma-
Ray could be extended to decrypt file system writes as they oc-
curred. In addition, if only file-level encryption was employed,
Gamma-Ray could still report data updates for unencrypted
files and metadata updates for all files.

(c) Privacy Considerations. We envision a fine-grain access
control policy, with configuration options allowing visibility
only to the relevant parts of the guest file system. This limited
visibility can also be enforced by the end user via partial disk
encryption. Trusting Gamma-Ray is no different from trusting
an agent from one of many vendors.

VIII. RELATED WORK

DS-VMI provides a unique set of features not seen together
before: it maintains full-fidelity update streams, it is not limited
by backing storage type, it requires no in-guest support, it does
not require paravirtualization, it generalizes across closed- and
open-source kernels, and it directly leverages hierarchy present
in the organization of modern virtualized clouds.

The storage community [1, 14, 23, 27] provides performant
solutions for snapshotting which could be polled for file
updates. The smart disk community [2, 33] provides meth-
ods of semantically understanding file systems and file-level
updates to increase performance via intelligent prefetching
and reorganizing sector layout on disk. The VMI commu-
nity [4, 9, 15, 19, 20, 28, 38, 39] provides techniques for
understanding the disk write stream.

Olive [1], Lithium [14], and Petal [23] create snapshots
within hundreds of milliseconds and incur low I/O overhead.
Parallax [27] was explicitly designed to support “frequent,
low-overhead snapshot[s] of virtual disks.” Snapshotting at a
high frequency of 100 times per second caused only 4% I/O
overhead to the guest OS using the virtual disk served by
Parallax. However, information is lost in between snapshots.



Semantically-smart disk systems (SDS) [33] interpret meta-
data and the type of a sector on disk as well as associations
between sectors, but do not support distributed streaming and
would require guest support. IDStor [2] implements inference
for disk sector writes for iSCSI network storage with the ext 3
file system. Zhang et al. [39] describe a VM-based approach
that leverages smart disk technology.

Garfinkel and Rosenblum [12] coin the term virtual ma-
chine introspection and develop an architecture focusing on
analyzing memory. Formally, DS-VMI is an out-of-band intro-
spection method [29]. XenAccess [28] introspects both mem-
ory and disk, but only infers file creations and deletions. Zhang
et al. [38] introspect disk, but for enforcing access control rules
in the critical /O path. VMWatcher [20] interprets memory
and disk operations, but requires kernel source. VMScope [19]
captures events such as system calls, but does not interpret
virtual disk writes. Virtuoso [9] automatically generates in-
trospection tools, but not for disk operations. Hildebrand et
al. [15] describe a method of performing disk introspection
to the point of identifying disk sectors as metadata or data.
Maitland [4] is a system that performs lightweight VMI for
cloud computing via paravirtualization.

IX. CONCLUSION

We proposed DS-VMI, an agentless approach indepen-
dent of a VM guest’s OS, to provide external applications
near-real-time visibility into the file-level updates of a run-
ning VM guest. We enumerated an explicit tradeoff between
performance, completeness, and latency and found that, for
practical applications, low latency, low overhead, and bounded
resource usage are all achievable. Using DS-VMI, we imple-
mented two valuable interfaces for cloud-wide applications: (1)
cloud-inotify for selective streaming of updates, and (2)
/cloud for a read-only up-to-date file-system view of running
instances. These two interfaces enable efficient implementation
of cloud-wide file-level monitoring applications, such as log
monitoring, without any guest support.

Gamma-Ray is released open source under the Apache 2.0
License at https:/github.com/cmusatyalab/gammaray.
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