SEARCH
ISTC-CC NEWSLETTER
RESEARCH HIGHLIGHTS
Ling Liu's SC13 paper "Large Graph Processing Without the Overhead" featured by HPCwire.
ISTC-CC provides a listing of useful benchmarks for cloud computing.
Another list highlighting Open Source Software Releases.
Second GraphLab workshop should be even bigger than the first! GraphLab is a new programming framework for graph-style data analytics.
ISTC-CC Abstract
Orchestrated Scheduling and Prefetching for GPGPUs
Proceedings of the 40th International Symposium on Computer Architecture (ISCA), Tel-Aviv, Israel, June 2013.
Adwait Jog†, Onur Kayiran†, Asit K. Mishra§, Mahmut T. Kandemir†, Onur Mutlu‡, Ravishankar Iyer§, Chita R. Das†
†The Pennsylvania State University
‡Carnegie Mellon University
§Intel Labs
In this paper, we present techniques that coordinate the thread scheduling and prefetching decisions in a General Purpose Graphics Processing Unit (GPGPU) architecture to better tolerate long memory latencies. We demonstrate that existing warp scheduling policies in GPGPU architectures are unable to effectively incorporate data prefetching. The main reason is that they schedule consecutive warps, which are likely to access nearby cache blocks and thus prefetch accurately for one another, back-to-back in consecutive cycles. This either 1) causes prefetches to be generated by a warp too close to the time their corresponding addresses are actually demanded by another warp, or 2) requires sophisticated prefetcher designs to correctly predict the addresses required by a future "far-ahead" warp while executing the current warp.
We propose a new prefetch-aware warp scheduling policy that overcomes these problems. The key idea is to separate in time the scheduling of consecutive warps such that they are not executed back-to-back. We show that this policy not only enables a simple prefetcher to be effective in tolerating memory latencies but also improves memory bank parallelism, even when prefetching is not employed. Experimental evaluations across a diverse set of applications on a 30-core simulated GPGPU platform demonstrate that the prefetch-aware warp scheduler provides 25% and 7% average performance improvement over baselines that employ prefetching in conjunction with, respectively, the commonly employed round-robin scheduler or the recently-proposed two-level warp scheduler. Moreover, when prefetching is not employed, the prefetch-aware warp scheduler provides higher performance than both of these baseline schedulers as it better exploits memory bank parallelism.
FULL PAPER: pdf