SEARCH
ISTC-CC NEWSLETTER
RESEARCH HIGHLIGHTS
Ling Liu's SC13 paper "Large Graph Processing Without the Overhead" featured by HPCwire.
ISTC-CC provides a listing of useful benchmarks for cloud computing.
Another list highlighting Open Source Software Releases.
Second GraphLab workshop should be even bigger than the first! GraphLab is a new programming framework for graph-style data analytics.
ISTC-CC Abstract
Delay-tolerant Mix-zones on Road Networks
Distributed and Parallel Databases, Springer, online first, 2013.
Balaji Palanisamy, Ling Liu*, Kisung Lee*, Shicong Meng^, Yuzhe Tang*
University of Pittsburgh
*Georgia Institute of Technology
^IBM T. J. Watson Research Center
This paper presents a delay-tolerant mix-zone framework for protecting the location privacy of mobile users against continuous query correlation attacks. First, we describe and analyze the continuous query correlation attacks (CQ-attacks) that perform query correlation based inference to break the anonymity of road network- aware mix-zones.We formally study the privacy strengths of the mix-zone anonymiza- tion under the CQ-attack model and argue that spatial cloaking or temporal cloaking over road network mix-zones is ineffective and susceptible to attacks that carry out inference by combining query correlation with timing correlation (CQ-timing attack) and transition correlation (CQ-transition attack) information. Next, we introduce three types of delay-tolerant road network mix-zones (i.e., temporal, spatial and spatio-temporal) that are free from CQ-timing and CQ-transition attacks and in contrast to conventional mix-zones, perform a combination of both location mixing and identity mixing of spatially and temporally perturbed user locations to achieve stronger anonymity under the CQ-attack model. We show that by combining temporal and spatial delay-tolerant mix-zones, we can obtain the strongest anonymity for continuous queries while making acceptable tradeoff between anonymous query processing cost and temporal delay incurred in anonymous query processing. We evaluate the proposed techniques through extensive experiments conducted on realistic traces produced by GTMobiSim on different scales of geographic maps. Our experiments show that the proposed techniques offer high level of anonymity and attack resilience to continuous queries.
FULL PAPER: pdf