SEARCH
ISTC-CC NEWSLETTER
RESEARCH HIGHLIGHTS
Ling Liu's SC13 paper "Large Graph Processing Without the Overhead" featured by HPCwire.
ISTC-CC provides a listing of useful benchmarks for cloud computing.
Another list highlighting Open Source Software Releases.
Second GraphLab workshop should be even bigger than the first! GraphLab is a new programming framework for graph-style data analytics.
ISTC-CC Abstract
Discretized Streams: An Efficient and Fault-Tolerant Model for Stream Processing on Large Clusters
HotCloud'12, Boston, MA, June 12-13, 2012.
Matei Zaharia, Tathagata Das, Haoyuan Li, Scott Shenker, Ion Stoica
University of California, Berkeley
Many important "big data" applications need to process data arriving in real time. However, current programming models for distributed stream processing are relatively low-level, often leaving the user to worry about consistency of state across the system and fault recovery. Furthermore, the models that provide fault recovery do so in an expensive manner, requiring either hot replication or long recovery times. We propose a new programming model, discretized streams (D-Streams), that offers a high-level functional programming API, strong consistency, and efficient fault recovery. D-Streams support a new recovery mechanism that improves efficiency over the traditional replication and upstream backup solutions in streaming databases: parallel recovery of lost state across the cluster. We have prototyped D-Streams in an extension to the Spark cluster computing framework called Spark Streaming, which lets users seamlessly intermix streaming, batch and interactive queries.
FULL PAPER: pdf