SEARCH
ISTC-CC NEWSLETTER
RESEARCH HIGHLIGHTS
Ling Liu's SC13 paper "Large Graph Processing Without the Overhead" featured by HPCwire.
ISTC-CC provides a listing of useful benchmarks for cloud computing.
Another list highlighting Open Source Software Releases.
Second GraphLab workshop should be even bigger than the first! GraphLab is a new programming framework for graph-style data analytics.
ISTC-CC Abstract
OTUS: RESOURCE ATTRIBUTION IN DATA-INTENSIVE CLUSTERS
MapReduce'11, June 8, 2011, San Jose, California, USA
Kai Ren, Julio López, Garth A. Gibson
Carnegie Mellon University
Frameworks for large scale data-intensive applications, such as Hadoop and Dryad, have gained tremendous popularity. Understanding the resource requirements of these frame- works and the performance characteristics of distributed ap- plications is inherently dicult. We present an approach, based on resource attribution, that aims at facilitating per- formance analyses of distributed data-intensive applications. This approach is embodied in Otus, a monitoring tool to attribute resource usage to jobs and services in Hadoop clusters. Otus collects and correlates performance metrics from distributed components and provides views that dis- play time-series of these metrics ltered and aggregated us- ing multiple criteria. Our evaluation shows that this ap- proach can be deployed without incurring major overheads. Our experience with Otus in a production cluster suggests its e effectiveness at helping users and cluster administrators with application performance analysis and troubleshooting.
FULL PAPER: pdf