SEARCH
ISTC-CC NEWSLETTER
RESEARCH HIGHLIGHTS
Ling Liu's SC13 paper "Large Graph Processing Without the Overhead" featured by HPCwire.
ISTC-CC provides a listing of useful benchmarks for cloud computing.
Another list highlighting Open Source Software Releases.
Second GraphLab workshop should be even bigger than the first! GraphLab is a new programming framework for graph-style data analytics.
ISTC-CC Abstract
Automated Control for Elastic n-Tier Workloads based on Empirical Modeling
ICAC'11, June 14–18, 2011, Karlsruhe, Germany.
Simon Malkowski*,
Markus Hedwig^,
Jack Li*,
Calton Pu*,
Dirk Neumann^
*Georgia Institute of Technology
^Albert-Ludwigs-University, Germany
Elastic n-tier applications have non-stationary workloads that require adaptive control of resources allocated to them. This presents not only an opportunity in pay-as-you-use clouds, but also a challenge to dynamically allocate virtual machines appropriately. Previous approaches based on control theory, queuing networks, and machine learning work well for some situations, but each model has its own limitations due to inaccuracies in performance prediction. In this paper we propose a multi-model controller, which integrates adaptation decisions from several models, choosing the best. The focus of our work is an empirical model, based on detailed measurement data from previous application runs. The main advantage of the empirical model is that it returns high quality performance predictions based on measured data. For new application scenarios, we use other models or heuristics as a starting point, and all performance data are continuously incorporated into the empirical model's knowledge base. Using a prototype implementation of the multi-model controller, a cloud testbed, and an ntier benchmark (RUBBoS), we evaluated and validated the advantages of the empirical model. For example, measured data show that it is more effective to add two nodes as a group, one for each tier, when two tiers approach saturation simultaneously.
FULL PAPER: pdf