
A-DRM: Architecture-aware Distributed Resource Management
of Virtualized Clusters

Hui Wang†∗, Canturk Isci‡, Lavanya Subramanian∗, Jongmoo Choi\∗, Depei Qian†, Onur Mutlu∗
†Beihang University, ‡IBM Thomas J. Watson Research Center, ∗Carnegie Mellon University, \Dankook University
{hui.wang, depeiq}@buaa.edu.cn, canturk@us.ibm.com, {lsubrama, onur}@cmu.edu, choijm@dankook.ac.kr

Abstract
Virtualization technologies has been widely adopted by
large-scale cloud computing platforms. These virtualized
systems employ distributed resource management (DRM)
to achieve high resource utilization and energy savings by
dynamically migrating and consolidating virtual machines.
DRM schemes usually use operating-system-level metrics,
such as CPU utilization, memory capacity demand and I/O
utilization, to detect and balance resource contention. How-
ever, they are oblivious to microarchitecture-level resource
interference (e.g., memory bandwidth contention between
different VMs running on a host), which is currently not
exposed to the operating system.

We observe that the lack of visibility into
microarchitecture-level resource interference significantly
impacts the performance of virtualized systems. Motivated
by this observation, we propose a novel architecture-
aware DRM scheme (A-DRM), that takes into account
microarchitecture-level resource interference when making
migration decisions in a virtualized cluster. A-DRM makes
use of three core techniques: 1) a profiler to monitor the
microarchitecture-level resource usage behavior online for
each physical host, 2) a memory bandwidth interference
model to assess the interference degree among virtual ma-
chines on a host, and 3) a cost-benefit analysis to determine
a candidate virtual machine and a host for migration.

Real system experiments on thirty randomly selected
combinations of applications from the CPU2006, PARSEC,
STREAM, NAS Parallel Benchmark suites in a four-host
virtualized cluster show that A-DRM can improve perfor-
mance by up to 26.55%, with an average of 9.67%, com-
pared to traditional DRM schemes that lack visibility into
microarchitecture-level resource utilization and contention.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
VEE ’15, March 14–15, 2015, Istanbul, Turkey.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3450-1/15/03. . . $15.00.
http://dx.doi.org/10.1145/2731186.2731202

Categories and Subject Descriptors C.4 [Performance of
Systems]: Modeling techniques, measurement techniques;
D.4.8 [Operating Systems]: Performance – Modeling and
prediction, measurements, operational analysis

Keywords virtualization; microarchitecture; live migra-
tion; performance counters; resource management

1. Introduction
Server virtualization and workload consolidation enable
multiple workloads to share a single physical server, re-
sulting in significant energy savings and utilization im-
provements. In addition to improved efficiency, virtualiza-
tion drastically reduces operational costs through automated
management of the distributed physical resources. Due to
these attractive benefits, many enterprises, hosting providers,
and cloud vendors have shifted to a virtualization-based
model for running applications and providing various ser-
vices (e.g., Amazon EC2 [2], Windows Azure [1]).

A key feature of virtualization platforms is the ability
to move a virtual machine (VM) between physical hosts.
This feature enables the migration of VMs to the appropri-
ate physical hosts such that overall cluster efficiency is im-
proved and resource utilization hot-spots are eliminated [15,
35, 43, 53]. In order to derive efficiency benefits from vir-
tualization, the distributed resources should be managed ef-
fectively using an automated Distributed Resource Manage-
ment (DRM) scheme. Such a scheme employs the VM mi-
gration feature judiciously to migrate VMs to the appropri-
ate physical hosts such that VMs do not interfere with each
other or significantly degrade each other’s performance.

Many current DRM schemes [23, 27–31, 34, 56, 70,
72], including commercial products [31], manage VMs
based solely on operating-system-level metrics, such as
CPU utilization, memory capacity demand and I/O uti-
lization. Such schemes do not consider interference at
the microarchitecture-level resources such as the shared
last level cache capacity and memory bandwidth. In this
work, we observe that operating-system-level metrics like
CPU utilization and memory capacity demand that are
often used to determine which VMs should be migrated
to which physical hosts cannot accurately characterize a
workload’s microarchitecture-level shared resource inter-

1

ference behavior. We observe that VMs may exhibit simi-
lar CPU utilization and memory capacity demand but very
different memory bandwidth usage. Hence, DRM schemes
that operate solely based on operating-system-level met-
rics could make migration decisions that leave the underly-
ing microarchitecture-level interference unsolved or make it
worse, leading to more interference at the microarchitecture-
level and thus degrade the overall performance.

Some VM scheduling approaches (e.g., [75]) attempt to
account for microarchitecture-level interference offline by
employing a profiling phase to build a workload interference
matrix that captures the interference characteristics when
different pairs of applications are co-run. They then build
constraints into the DRM scheme to forbid the co-location
of workloads that heavily interfere with each other. We ob-
serve that such an offline profiling approach to incorporate
microarchitecture-level interference into VM management
at a cluster level has two major drawbacks. First, obtaining
an interference matrix through profiling might not be feasi-
ble in all scenarios. For instance, it is not feasible for hosting
providers and cloud vendors such as Amazon EC2 [2] and
Microsoft Azure [1] to profile jobs from all users in advance,
since it would incur prohibitive overhead to do so. Second,
even if workloads can be profiled offline, due to workload
phase changes and changing inputs, interference character-
istics could change over execution. Hence, the interference
matrix compiled from offline profiling might not accurately
capture interference behavior during runtime.

Our goal, in this work, is to design a DRM scheme
that takes into account interference between VMs at the
microarchitecture-level shared resources, thereby improv-
ing overall system performance. To this end, we pro-
pose an architecture-aware DRM scheme, A-DRM. A-DRM
takes into account two main sources of interference at the
microarchitecture-level, 1) shared last level cache capacity
and 2) memory bandwidth by monitoring three microarchi-
tectural metrics: last level cache miss rate, memory band-
width consumption and average memory latency. Specifi-
cally, A-DRM monitors the memory bandwidth utilization
at each host. When the memory bandwidth utilization at a
host exceeds a threshold, the host is identified as contended.
Once such contention has been identified, the next key step
is to identify which VMs should be migrated and to which
hosts. In order to identify this, A-DRM performs a cost-
benefit analysis to determine by how much each potential
destination host’s performance would be impacted if each
VM on the contended host were migrated to it. Specifically,
the cost-benefit analysis first estimates the increase in the
last level cache miss rate at each potential destination host if
each VM on the contended host were moved to it and then
uses this miss rate increase to quantify the performance im-
pact on the destination host.

We implement A-DRM on KVM 3.13.5-202 and QEMU
1.6.2, and perform comprehensive evaluations using a four-
host cluster with various real workloads. Our experimen-
tal results show that A-DRM can improve the performance
of a cluster by up to 26.55% with an average of 9.67%,

and improve the memory bandwidth utilization by 17% on
average (up to 36%), compared to a state-of-the-art DRM
scheme [34] that does not take into account microarchitecture-
level interference.

This paper makes the following contributions:

• We show that many real workloads exhibit differ-
ent memory bandwidth and/or LLC usage behav-
ior even though they have similar CPU utilization
and memory capacity demand. Therefore, for effec-
tive distributed resource management, we need to con-
sider not only operating-system-level metrics but also
microarchitecture-level resource interference.

• We propose a model to assess the impact of interference
on a host and perform a cost-benefit analysis to measure
the impact of migrating every VM from a contended
source host to a destination host.

• We propose A-DRM, which to our best knowledge, is the
first DRM scheme that takes into account the character-
istics of microarchitecture-level interference in making
VM migration decisions, thereby mitigating interference
and improving overall system (cluster) performance.

• We implement and evaluate our proposal on real hard-
ware using diverse workloads, demonstrating significant
performance improvements.

• We discuss several practical challenges that we encounter
when implementing our A-DRM scheme, such as the
effect of socket migration and the interconnection traffic.

2. Background and Motivation
In this section, we provide background on the main sources
of microarchitecture-level interference. We then discuss the
limitations of current DRM schemes that perform VM man-
agement using only operating-system-level metrics such as
CPU utilization and memory capacity demand.

2.1 Microarchitecture-level Interference
The shared last level cache (LLC) capacity and main mem-
ory bandwidth are two major resources that are heavily con-
tended between VMs sharing a machine [41, 42, 50, 51,
63]. Applications/VMs evict each other’s data from the last
level cache, causing an increase in memory access latency,
thereby resulting in performance degradation [57, 58, 61].
Applications’/VMs’ requests also contend at the different
components of main memory, such as channels, ranks and
banks, resulting in performance degradation [39, 41, 42, 47,
50, 51, 63, 64]. Different applications have different sensi-
tivity to cache capacity and memory bandwidth [57, 63]. An
application/VM’s performance degradation depends on the
application/VM’s sensitivity to shared resources and the co-
running applications/VMs [20, 63].

Today’s servers typically employ a Non-Uniform Mem-
ory Access (NUMA) architecture, which has multiple sock-
ets that are connected via interconnect links (e.g. QPI [33]).
Several previous works propose to mitigate interference by
migrating VMs across sockets such that applications/VMs

2

 0
 25
 50
 75

 100

 0 300 600 900 1200

M
B

W
 [

%
]

Time (s)

 0
 25
 50
 75

 100

M
E

M
 [

%
]

 0
 25
 50
 75

 100
C

P
U

 [
%

]

Host A
Host B

Figure 1: Resource utilization of Traditional
DRM

 0
 25
 50
 75

 100

 0 300 600 900 1200

M
B

W
 [

%
]

Time (s)

 0
 25
 50
 75

 100

M
E

M
 [

%
]

 0
 25
 50
 75

 100

C
P

U
 [

%
]

Host A
Host B

Figure 2: Resource utilization of Traditional
DRM + MBW-awareness

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

vm
01

-S
TR

EA
M

vm
02

-S
TR

EA
M

vm
03

-S
TR

EA
M

vm
04

-S
TR

EA
M

vm
05

-S
TR

EA
M

vm
06

-S
TR

EA
M

vm
07

-S
TR

EA
M

vm
08

-g
ro

m
ac

s

vm
09

-g
ro

m
ac

s

vm
10

-g
ro

m
ac

s

vm
11

-g
ro

m
ac

s

vm
12

-g
ro

m
ac

s

vm
13

-g
ro

m
ac

s

vm
14

-g
ro

m
ac

s
H

M

IP
C

Traditional DRM Architecture-aware DRM

49.2%

Figure 3: IPC Performance (HM is harmonic
mean.)

that do not contend for the same shared resource are mapped
to the same socket [12, 45, 60]. Our focus, in this work, is
not on a single server, but on a cluster of servers. We ex-
plore VM migration across nodes, which is complementary
to migrating applications/VMs across sockets.

2.2 Limitations of Traditional DRM Schemes
To address the VM-to-Host mapping challenge, prior
works [23, 27–31, 34, 56, 72] have proposed to manage
the physical resources by monitoring operating-system-level
metrics (such as CPU utilization, memory capacity demand)
and appropriately mapping VMs to hosts such that the uti-
lization of CPU/memory resources is balanced across differ-
ent hosts. While these schemes have been shown to be effec-
tive at CPU/memory resource scheduling and load balanc-
ing, they have a fundamental limitation – they are not aware
of the microarchitecture-level shared resource interference.

2.2.1 Lack of Microarchitecture-level Shared Resource
Interference Awareness

Prior works, including commercial products, base migration
decisions on operating-system-level-metrics. However, such
metrics cannot capture the microarchitecture-level shared re-
source interference characteristics. Our real workload pro-
filing results (detailed in Section 6.1) show that there are
many workloads, e.g., STREAM and gromacs, that exhibit
similar CPU utilization and demand for memory capacity,
but have very different memory bandwidth consumption.
Thus, when VMs exhibit similar CPU and memory capac-
ity utilization and the host is not overcommitted (i.e., CPU
or memory is under-utilized), traditional DRM schemes that
are unaware of microarchitecture-level shared resource inter-
ference characteristics would not recognize a problem and
would let the current VM-to-host mapping continue. How-
ever, the physical host might, in reality, be experiencing
heavy contention at the microarchitecture-level shared re-
sources such as shared cache and main memory.

2.2.2 Offline Profiling to Characterize Interference
Some previous works [31, 37, 75] seek to mitigate inter-
ference between applications/VMs at the microarchitecture-
level shared resources by defining constraints based on of-
fline profiling of applications/VMs, such that applications
that contend with each other are not co-located. For instance,
in VMware DRS [31], rules can be defined for VM-to-VM
or VM-to-Host mappings. While such an approach based on
offline profiling could work in some scenarios, there are two

major drawbacks to such an approach. First, it might not
always be feasible to profile applications. For instance, in
a cloud service such as Amazon EC2 [2] where VMs are
leased to any user, it is not feasible to profile applications
offline. Second, even when workloads can be profiled of-
fline, due to workload phase changes and changing inputs,
the interference characteristics might be different compared
to when the offline profiling was performed. Hence, such an
offline profiling approach has limited applicability.

2.3 The Impact of Interference Unawareness
In this section, we demonstrate the shortcomings of DRM
schemes that are unaware of microarchitecture-level shared
resource interference with case studies. We pick two ap-
plications: gromacs from the SPEC CPU2006 benchmark
suite [6] and STREAM [7]. STREAM and gromacs have
very similar memory capacity demand, while having very
different memory bandwidth usage: STREAM has high
bandwidth demand, gromacs has low (more workload pairs
that have such characteristics can be found in Section 6.1).

We run seven copies (VMs) of STREAM on Host A and
seven copies (VMs) of gromacs on Host B (initially). Both
of the hosts are SuperMicro servers equipped with two Intel
Xeon L5630 processors running at 2.13GHz (detailed in
Section 5). Each VM is configured to have 1 vCPU and 2
GB memory.

Figure 1 shows the CPU utilization (CPU), total mem-
ory capacity demand of VMs over host memory capacity
(memory capacity utilization - MEM), and memory band-
width utilization (MBW) of the hosts when a traditional
DRM scheme, which relies on CPU utilization and mem-
ory capacity demand, is employed. We see that although the
memory bandwidth on Host A is heavily contended (close
to achieving the practically possible peak bandwidth [21]),
the traditional DRM scheme does nothing (i.e., does not mi-
grate VMs) since the CPU and memory capacity on Host A
and Host B are under-utilized and Host A and Host B have
similar CPU and memory capacity demands for all VMs.

Figure 2 shows the same information for the same two
hosts, Host A and Host B. However, we use a memory-
bandwidth-contention-aware DRM scheme to migrate three
VMs that consume the most memory bandwidth from Host
A to Host B at 300 seconds, 600 seconds and 900 seconds.
To keep the CPU resources from being oversubscribed, we
also migrate three VMs that have low memory bandwidth
requirements from Host B to Host A. We see that after the
three migrations, the memory bandwidth usage on Host A

3

and Host B are balanced, compared to when employing the
traditional DRM scheme (Figure 1).

Figure 3 shows the performance comparison between the
traditional DRM and memory-bandwidth-contention-aware
schemes, measured in IPC (Instructions Per Cycle). We see
that the IPC of the VMs running STREAM increases dra-
matically (close to 2x in some cases). The harmonic mean of
the IPC across all VMs improves by 49.2%, compared to the
traditional DRM scheme. These results show that traditional
DRM schemes that base their migration decisions solely on
CPU utilization and memory capacity demand could leave
significant performance potential unharnessed.

Our goal, in this work, is to design a DRM scheme that
considers microarchitecture-level shared resource interfer-
ence when making VM migration decisions such that in-
terference is mitigated and resource utilization and perfor-
mance are improved in a virtualized cluster.

3. A-DRM: Design
In this section, we describe the design of A-DRM, our pro-
posed distributed resource management scheme that in-
corporates awareness of microarchitecture-level shared re-
source interference.

3.1 Overview
Figure 4 presents an overview of A-DRM, which consists of
two components: a profiler deployed in each physical host
and a controller that is run on a dedicated server.

OS+Hypervisor

QEMU

VM

 App

QEMU

VM

 App

A-DRM: Global Architecture ✄

aware Resource Manager

Profiling Engine

Architecture-aware

Interference Detector

Architecture-aware

Distributed Resource

Management (Policy)

Migration Engine

Hosts Controller

CPU/MEM

Profiler

Architectural

Resource

���

Figure 4: Prototype implementation

The primary objective of the profiler is to monitor re-
source usage/demands and report them to the controller pe-
riodically (at the end of every profiling interval). The pro-
filer consists of two main components: 1) a CPU and mem-
ory profiler, which interacts with the hypervisor to get the
CPU utilization and memory capacity demand of each VM
and 2) an architectural resource profiler that leverages the
hardware performance monitoring units (PMUs) to monitor
the last level cache (LLC) capacity and memory bandwidth
(MBW) usage of each VM. The architectural resource pro-
filer also monitors the total memory bandwidth utilization
and the average DRAM read latency, at each socket, to be
used in detecting and managing interference.

The controller is the centerpiece of our distributed re-
source management framework. It is designed to detect
microarchitecture-level shared resource interference and
leverage this information to perform VM migration. The

controller consists of four components: 1) A profiling en-
gine that stores the data collected by the profiler. In order to
improve accuracy and robustness in profiling data, a sliding
window mechanism is used to calculate the moving aver-
age and smooth the profiled statistics. 2) An architecture-
aware interference detector is invoked at each scheduling
interval to detect microarchitecture-level shared resource
interference. It detects hosts whose memory bandwidth uti-
lization is greater than a threshold and classifies such hosts
as contended. 3) Once such interference is detected, the
architecture-aware DRM policy is used to determine new
VM-to-Host mappings to mitigate the detected interference.
The architecture-aware DRM policy computes the increase
in LLC miss rates at each potential destination host, if each
VM on a contended host were to be moved to it. It uses these
miss rate increases to quantify the cost and benefit, in terms
of performance impact at the source and destination hosts
for every <contended host, VM, potential destination> tu-
ple. This cost-benefit analysis is used to determine the best
VM-to-host mappings. 4) The migration engine is then in-
voked to achieve the new VM-to-Host mappings via VM
migration. These migrations could be configured to happen
automatically or with the approval of the administrator.

3.2 Profiling Engine
The profiling engine stores the data collected by the profiler
to quantify LLC and memory bandwidth interference, such
as memory bandwidth consumption and LLC miss rate. The
list of the monitored performance events and how exactly
these are employed to quantify LLC and memory bandwidth
interference are described in Table 1 and Section 4.

3.3 Architecture-aware Interference Detector
The architecture-aware interference detector detects the
microarchitecture-level shared resource interference at each
host. As we discussed in Section 2.1, the LLC capacity
and main memory bandwidth are two major sources of
microarchitecture-level shared resource interference. When
VMs contend for the limited LLC capacity available on a
host, they evict each other’s data from the LLC. This in-
creases data accesses to main memory, thereby increasing
memory bandwidth consumption and interference. Further-
more, VMs’ requests also contend for the limited main mem-
ory bandwidth at different main memory components such
as channels, ranks and banks. Since the impact of both cache
capacity and memory bandwidth interference is an increase
in memory bandwidth utilization, the architecture-aware in-
terference detector uses the memory bandwidth consumed
at each host to determine the degree of microarchitecture-
level shared resource interference. It computes the memory
bandwidth utilization at each host as

MBWutil =
ConsumedMemoryBandwidth

PeakMemoryBandwidth
. (1)

When the MBWutil at a host is greater than a threshold,
MBWThreshold, we identify the host as experiencing inter-
ference at the microarchitecture-level shared resources. We

4

provide more details on how we measure memory bandwidth
in Section 4.1.

3.4 Architecture-aware DRM policy
The architecture-aware DRM policy is at the core of our
controller and is invoked at the beginning of each scheduling
interval. In this section, we present the high level design
of our architecture-aware DRM policy. We provide more
implementation details in Algorithm 1 and Section 4.2. Our
DRM policy employs a two phase algorithm to determine an
alternate VM-to-host mapping that mitigates interference.

Algorithm 1 A-DRM’s memory bandwidth based VM mi-
gration algorithm

1: Input: Metrics (Snapshot of the measured metrics of entire cluster)
2: RecommendedMigrations← null
3:
4: /* First phase: find a set of migrations to mitigate memory bandwidth

interference */
5: for each MBWContendedHost src in the cluster do
6: while MBWutil of src >MBWThreshold do
7: MaxBenefit← 0
8: BestMigration← null
9: for each VM v in src do

10: for each host dst with MBWutil <MBWThreshold do
11: Benefit← Benefitvm +Benefitsrc
12: Cost← Costmigration + Costdst
13: if Benefit− Cost > MaxBenefit then
14: MaxBenefit← Benefit
15: BestMigration← migrate v from src to dst
16: end if
17: end for
18: end for
19: if BestMigration 6= null then
20: RecommendedMigrations.add(BestMigration)
21: Update Metrics to reflect BestMigration
22: end if
23: end while
24: end for
25:
26: /* Second phase: balance CPU and memory utilization */
27: for each CPU/MemoryCapacityContendedHost src in the cluster do
28: while src still CPU or Memory Capacity contended do
29: MinMBWRatio← 1 /* 0 ≤ Ratio ≤ 1 */
30: BestMigration← null
31: for each VM v in src do
32: for each host dst with CPUutil < CPUThreshold or

MEMutil <MEMThreshold do
33: MBWRatio← the MBW ratio on dst after migration
34: if MBWRatio < MinMBWRatio then
35: MinMBWRatio←MBWRatio
36: BestMigration← migrate v from src to dst
37: end if
38: end for
39: end for
40: if BestMigration 6= null then
41: RecommendedMigrations.add(BestMigration)
42: Update Metrics to reflect BestMigration
43: end if
44: end while
45: end for
46: return RecommendedMigrations

In the first phase, we use a greedy hill-climbing tech-
nique to determine the best VM-to-host mapping with the
goal of mitigating microarchitecture-level shared resource
interference. For each host that is detected as contended

by the architecture-aware interference detector (MBWCon-
tendedHost in Algorithm 1 line 5), we aim to determine
a set of migrations that provides the most benefit, while
incurring the least cost. The Benefit (line 11) is an esti-
mation of the improvement in performance if a VM were
migrated, for both the VM under consideration to be mi-
grated (Benefitvm) and the other non-migrated VMs at
the source host (Benefitsrc). The Cost (line 12) is an es-
timation of the migration cost (Costmigration) and degrada-
tion in performance at each potential destination host due to
the migration (Costdst). We present detailed descriptions of
these costs and benefits in Section 4.2. We employ a non-
aggressive migration scheme that i) only migrates the least
number of VMs to bring the host’s MBWutil under the
MBWThreshold (line 6), and ii) does not migrate at all if
a good migration that has greater benefit than cost cannot
be identified (line 13). For each contended host, after we
determine a migration that provides the maximum benefit,
we will accordingly update the memory bandwidth demand
of the corresponding dst/src hosts by adding/subtracting
the VM’s bandwidth demand (line 21). The result of this
phase is a set of recommended migrations that seek to mit-
igate microarchitecture-level interference. While the recom-
mended migrations from this phase tackle the problem of
microarchitecture-level shared resource interference, they do
not take into account CPU utilization and memory capacity
demand. This is done in the second phase.

The second phase, which is similar to traditional CPU
and memory demand based DRM, balances the CPU and
memory capacity utilization across all hosts, preventing
CPU/memory capacity from being overcommitted, while
keeping the cluster-wide memory bandwidth utilization bal-
anced. Only after both phases are completed will the recom-
mended migrations be committed to the migration engine.

3.5 Migration Engine
The migration engine performs the migrations generated
by the architecture-aware DRM policy. We design the mi-
gration engine to avoid unnecessary migrations. Specifi-
cally, our migration engine has the ability to identify de-
pendencies among recommendations and eliminate avoid-
able migrations. For instance, if A-DRM issues two migra-
tions VMA: HostX → HostY (migrate VM A from host
X to Y) and VMA: HostY → HostX (migrate VM A
from host Y to X)1, the migration engine would not is-
sue them, since the second migration nullifies the effect of
the first migration. Furthermore, if A-DRM issues two mi-
grations VMA : HostX → HostY and VMA : HostY
→ HostZ , the migration engine will combine them into
one: VMA: HostX → HostZ , thereby improving the ef-
ficiency of migrations. After such dependencies have been
resolved/combined, the remaining recommended migrations
are executed.

1 This is possible because Metrics are continuously updated based on
recommended migrations. As a result, future recommended migrations may
contradict past recommended migrations.

5

4. A-DRM: Implementation
We prototype the proposed A-DRM on KVM 3.13.5-202 [43]
and QEMU 1.6.2 [5]. The host used in our infrastructure
is a NUMA system with two sockets (Section 5). We use
the Linux performance monitoring tool perf to access the
hardware performance counters, and the hardware perfor-
mance events we use are listed in Table 1. To estimate the
CPU demand of a VM, we use the mechanism proposed
by [34]. The memory capacity metrics of a VM are ob-
tained via libvirt [3]. We describe the details of our memory
bandwidth measurement scheme and cost-benefit analysis in
Sections 4.1 and 4.2 respectively.

4.1 Memory Bandwidth Measurement in NUMA
Systems

In a NUMA system, the host contains several sockets
and each socket is attached to one or more DIMMs
(DRAM modules). For each socket, we measure the
memory bandwidth using hardware performance events
UNC QMC NORMAL READS and UNC QMC WRITES,
which includes any reads and writes to the attached DRAM
memory. Thus the bandwidth consumption of the socket can
calculated as

ConsumedMemoryBandwidth

=
64B× (UNC QMC NORMAL READS + UNC QMC WRITES)

ProfilingInterval

since each of these reads and writes access 64 bytes of
data. This bandwidth consumption is used along with the
peak bandwidth to calculate memory bandwidth utilization
(MBWutil), as shown in Equation 1. A host is identified as
experiencing contention for microarchitecture-level shared
resources only when all sockets on a host have MBWutil

greater than the MBWThreshold. While it is possible that
only some of the sockets in a host could be contended, in a
NUMA system, such interference can usually be mitigated
by migrating VMs across sockets [12, 19, 45, 59, 60], which
is orthogonal to our proposal.

We also estimate the bandwidth for each VM using OF-
FCORE RESPONSE (in Table 1), which tracks the num-
ber of all requests from the corresponding VM to the
DRAM. The per-VM bandwidth metrics are correspond-
ingly added/subtracted from the socket-level bandwidth uti-
lization metrics to estimate the new memory bandwidth uti-
lizations during the execution of Algorithm 1.

4.2 Cost-Benefit Analysis
The main objective of the cost-benefit analysis is to filter out
migrations that do not provide performance improvement or
that degrade performance. For a given migration tuple <src,
vm, dst>, indicating migration of vm from host src to host
dst the costs include: 1) the VM migration cost and 2) per-
formance degradation at the destination host due to increased
interference. The benefits include: 1) performance improve-
ment of the migrated VM and 2) performance improvement

Table 1: Hardware Performance Events

Hardware Events Description
OFFCORE RESPONSE Requests serviced by DRAM
UNC QMC NORMAL READS Memory reads
UNC QMC WRITES Memory writes
UNC QMC OCCUPANCY Read request occupancy
LLC MISSES Last level cache misses
LLC REFERENCES Last level cache accesses
INSTRUCTION RETIRED Retired instructions
UNHALTED CORE CYCLES Unhalted cycles

of the other VMs on the source host due to reduced inter-
ference. To quantitatively estimate the costs and benefits, all
four types of costs/benefits are modeled as time overheads.

4.2.1 Cost: VM Migration
VM migration incurs high cost since all of the VM’s pages
need to be iteratively scanned, tracked and transferred from
the host to the destination. A-DRM models the cost of VM
migration by estimating how long a VM would take to mi-
grate. This cost depends mainly on the amount of memory
used by the VM, network speed and how actively the VM
modifies its pages during migration.

The VM migration approach used in A-DRM is a pre-
copy-based live migration [15, 43, 53] with timeout support.
Initially, live migration (that does not suspend the opera-
tion of the VM) is employed. If the migration does not fin-
ish within a certain time (live migration timeout), A-DRM
switches to an offline migration approach, which suspends
the entire VM and completes the migration.

A-DRM calculates the time required for VM migration
(Costmigration in Algorithm 1) based on the VM’s current
active memory size, the dirty page generation rate and the
data transfer rate across the network.

Costmigration =
ActiveMemorySize

DataTransferRate−DirtyRate
4.2.2 Cost: Performance Degradation at dst
By migrating a VM to a host, the VM would compete for
resources with other VMs on the destination host. The main
sources of contention at the destination host are the shared
LLC capacity and memory bandwidth. The VMs at the desti-
nation host would experience interference from the migrated
VM at these shared resources, thereby stalling for longer
times. The Stall cycles (Stall for short) indicates the latency
experienced by a VM from waiting for requests to the LLC
and DRAM, during the previous scheduling interval. It is
calculated as:

Stall = NumLLCHits ∗ LLCLatency +

NumDRAMAccesses ∗AvgDRAMLatency

We measure the NumLLCHits as the difference
between the performance events LLC REFERENCES and
LLC MISSES (in Table 1). We use a fixed LLCLatency
in our system [32]. We use the performance event OFF-
CORE RESPONSE to estimate NumDRAMAccesses.
We estimate the AvgDRAMLatency using per-
formance events UNC QMC OCCUPANCY and

6

UNC QMC NORMAL READS (in Table 1) as:

AvgDRAMLatency =
UNC QMC OCCUPANCY

UNC QMC NORMAL READS

For every migration tuple <src, vm, dst>, A-DRM uses a
simple linear model to estimate the new Stall of each VM on
the destination host after the migration, as a function of last
level cache misses per kilo cycles (MPKC), as follows:

NewStalli = Stalli ×
MPKCdst +MPKCvm

MPKCdst
,∀i ∈ dst

MPKCvm is the MPKC of the migrated vm, while MPKCdst
is the sum of MPKCs of all VMs on the destination host.
This simple linear model assumes that the Stall for each VM
on the destination host, dst, increases linearly as the increase
in MPKC (LLC miss rate) at the destination host, if vm were
moved from src to dst.

The increase in stall time for each individual VM, i, on
the destination host (from the linear model above) is

DeltaStalli =
Stalli ×MPKCvm

MPKCdst

The overall cost (performance degradation) on the destina-
tion host, in terms of time overhead, of migrating vm to dst is
calculated as the sum of the stall time increase of each VM:

Costdst =
∑
i∈dst

DeltaStalli

4.2.3 Benefit: Performance Improvement of vm
A similar linear model as the previous subsection can be
used to model the performance benefit experienced by the
migrated vm:

Benefitvm =
Stallvm ×MPKCsrc

MPKCdst

MPKCsrc is the sum of the MPKCs of all VMs on the
source host. The migrated vm’s stall time reduces/increases
proportionally to the ratio of the source and destination’s
memory bandwidth demand (MPKC), using a linear model.

4.2.4 Benefit: Performance Improvement at src
The performance improvement experienced by the VMs re-
maining on the src host can be estimated as:

Benefitsrc =
∑
j∈src

Stallj ×MPKCvm

MPKCsrc

The Stall of the remaining VMs on the source host re-
duces proportionally to the memory bandwidth demand
(MPKC) of the migrated VM (vm), using our linear model.

5. Methodology
We conduct our experiments on a cluster of four homo-
geneous NUMA servers and a Network-Attached Storage
(NAS). All servers and the shared NAS are connected via
a 1 Gbps network. Each server is dual-socket with a 4-core
Intel Xeon L5630 (Westmere-EP). Each core has a 32KB
private L1 instruction cache, a 32KB private L1 data cache, a

256KB private L2 cache, and each socket has a shared 12MB
L3 cache. Each socket is equipped with one 8GB DDR3-
1066 DIMM. We disable turbo boost and hyper-threading to
maximize repeatability. The hypervisor is KVM. The OS is
Fedora release 20 with Linux kernel version 3.13.5-202. The
QEMU and libvirt versions are 1.6.2 and 1.1.3.5, respec-
tively. Each virtual machine is configured to have 1 vCPU
and 2 GB memory.

Workloads. Our workloads are shown in Table 2. We use
applications from the SPEC CPU2006 [6], PARSEC [11],
NAS Parallel Benchmark [4] suites and the STREAM Bench-
mark [7, 47]. We also include two microbenchmarks: Mem-
oryHog and CPUUtilization, which saturate the memory ca-
pacity and CPU resources, respectively. We first profile the
microarchitecture-level shared resource usage of each appli-
cation by running it alone inside a VM and pinning the CPU
and memory to the same socket. We classify an application
as memory-intensive if its memory bandwidth consumption
is beyond 1 GB/s, and memory-non-intensive otherwise (de-
tails in Section 6.1). Except for the profiling experiments,
applications are iteratively run inside VMs.

Metrics. We use the harmonic mean of Instructions
Per Cycle (IPC) and weighted speedup [22, 62] to mea-
sure performance. We use the maximum slowdown met-
ric [16, 41, 42, 69] to measure unfairness.

Comparison Points and Parameters. We compare A-
DRM to a traditional CPU and memory demand based DRM
policy [34] (Traditional DRM in short). We employ the same
methodology to estimate the CPU utilization and memory
capacity demand for A-DRM and Traditional DRM. When
the total demand of all the VMs is beyond the host’s capac-
ity, it migrates the VMs to other under-utilized hosts. The
parameters used in our experiments are summarized below:

Parameter Name Value
CPU overcommit threshold (CPUThreshold) 90%
Memory overcommit threshold (MEMThreshold) 95%
Memory bandwidth threshold (MBWThreshold) 60%
DRM scheduling interval (scheduling interval) 300 seconds
DRM sliding window size 80 samples
Profiling interval (profiling interval) 5 seconds
Live migration timeout (live migration timeout) 30 seconds

6. Evaluation
In this section, we present our major evaluation results.
First, we present the characteristics of workloads, namely,
memory bandwidth, LLC hit ratio and memory capacity
demand. Afterwards, we revisit our motivational example
(Section 2.3), demonstrating the resource utilization behav-
ior and benefits with A-DRM. We then evaluate the effec-
tiveness of A-DRM with a variety of workload combinations.
Finally, we present sensitivity to different algorithm parame-
ters and summarize the lessons learned from our evaluations.

6.1 Workload Characterization
Figure 5 and Figure 6 show the memory capacity demand,
memory bandwidth and LLC hit ratio for each workload
considered in this study (Note the CPU utilization for each

7

Table 2: Workloads

Suites Benchmarks (55 total) Memory Intensity

SPEC CPU2006
bwaves, mcf, milc, leslie3d, soplex, GemsFDTD, libquantum, lbm (8 total) memory-intensive

perlbench, bzip2, gcc, gamess, zeusmp, gromacs, cactusADM, namd, gobmk, dealII, provary, memory-non-intensivecalculix, hmmer, sjeng, h264ref, tonto, omnetpp, astar, sphinx3, xalancbmk (20 total)

PARSEC 2.1 streamcluster (1 total) memory-intensive

blackscholes, bodytrack, canneal, dedup, facesim, ferret, fluidanimate, swaptions, x264 (9 total) memory-non-intensive

NAS Parallel Benchmark cg.B, cg.C, lu.C, sp.B, sp.C, ua.B, ua.C (7 total) memory-intensive

bt.B, bt.C, ep.C ft.B, is.C, lu.B, mg.C (7 total) memory-non-intensive

STREAM STREAM (1 total) memory-intensive

Microbenchmark MemoryHog, CPUUtilization (2 total) memory-non-intensive

VM is always above 95%, which is not shown in the fig-
ures). The reported values are measured when we run each
workload alone and pin the vCPU and memory to the same
socket. We make the following observations.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

M
em

o
ry

 C
ap

ac
it

y
 (

M
B

)

Memory Bandwidth (MB/s)

perlbench

bzip2

gcc

bwaves

gamess

mcf

milc

zeusmp

gromacs

cactusADM

leslie3d
namdgobmk

dealII

soplex

povray
calculix

hmmer

sjeng

GemsFDTD

libquantum
h264reftonto

lbm

omnetpp
astar

sphinx3

xalancbmk

blackscholes
bodytrack

bt.B

bt.C

canneal

cg.B

cg.C

cpuutil

dedup

ep.C

facesim

ferret

fluidanimate

ft.B

ft.C

is.C

lu.B

lu.C

memhog

mg.C

sp.B

sp.C

stream

streamcluster

swaptions

ua.B

ua.C

x264

Figure 5: Memory capacity vs. memory bandwidth consumption

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

L
L

C
 H

it
 R

at
io

Memory Bandwidth (MB/s)

perlbench

bzip2

gcc

bwaves

gamess

mcf

milc

zeusmp

gromacs

cactusADM

leslie3d

namd

gobmk

dealII

soplex

povray

calculix

hmmer

sjeng

GemsFDTD

libquantum

h264reftonto

lbm

omnetpp

astar

sphinx3

xalancbmk

blackscholes

bodytrack

bt.B

bt.C

canneal

cg.B

cg.C

cpuutil

dedup

ep.C

facesim

ferret

fluidanimate

ft.B

is.C

lu.B

lu.C
memhog

mg.C

sp.Bsp.C

stream

streamcluster

swaptions

ua.B
ua.C

x264

Figure 6: LLC hit ratio vs. memory bandwidth consumption

First, there is no strong correlation between memory ca-
pacity demand and memory bandwidth (Figure 5). For in-
stance, the workloads STREAM and gromacs have simi-
lar memory capacity demand (around 400MB) while their
memory bandwidth requirements are quite different (mem-
ory bandwidth requirement of STREAM is 4.5 GB/s while
that of gromacs is 0.1 GB/s). There are more such pairs
(e.g., blackscholes vs. GemsFDTD, perlbench vs. facesim),
indicating that several workloads exhibit different memory
bandwidth requirements, while having similar memory ca-
pacity demand.2 Second, generally, workloads that consume

2 Similarly, we observed no correlation between the memory bandwidth
demand and CPU utilization of a workload.

low memory bandwidth exhibit a high LLC hit ratio (Fig-
ure 6). However, there exist cases where workloads con-
sume very different amounts of memory bandwidth even
when they exhibit similar LLC hit ratios (e.g., leslie3d and
blackscholes). This is because the hit ratio only captures
what fraction of accesses hit in the cache, whereas the ab-
solute number of requests to the shared memory hierar-
chy could be very different for different applications. Third,
when workloads that have high bandwidth requirements (of-
ten due to a low LLC hit ratio) are co-located on the same
host, they tend to interfere (as they both access memory
frequently), degrading performance significantly. To prevent
this contention, we need to consider memory bandwidth and
LLC usage behavior in making co-location decisions, as we
describe in Equation (1) and Section 4.2.

6.2 A-DRM Case Study
We revisit the example discussed in Section 2.3 and demon-
strate the effectiveness of A-DRM on the workloads in the
example. Figure 7 shows the impact (over time), of apply-
ing A-DRM on our workloads. At the bottom, the evolution
of VM-to-host mappings is shown (labeled from A to D).
There are two hosts and seven VMs on each host. Each VM
runs either the STREAM benchmark which is represented
as a rectangle with vertical lines (denoted as “H”, meaning
that it has high memory bandwidth demand) or the gromacs
benchmark which is represented as a rectangle with horizon-
tal lines (denoted as “L”, meaning it has low memory band-
width demand). The figure also shows the variation of the
total CPU utilization (CPU), memory capacity demand uti-
lization (MEM) and memory bandwidth utilization (MBW)
(normalized to the total capacity of the host) on each of the
hosts, as time goes by. The timeline is labeled from 1 to 6 .

In the initial state (labeled as A), we configure all VMs
(VM01-VM07) in Host A to run the STREAM benchmark,
while all VMs (VM08-VM14) in Host B run the gromacs
benchmark. Since STREAM has high memory bandwidth
demand, Host A becomes bandwidth-starved, while Host B
which executes gromacs (an application with low memory
bandwidth demand) has ample unused bandwidth. At the end
of the first scheduling interval (300 seconds, 1), A-DRM
detects that the memory bandwidth utilization of Host A is
above the MBWThreshold (60%).

8

Host

States

M
B

W
 S

ta
rv

e
d

M
B

W
 E

n
o

u
g

h

MBW

Demand

H

L

0 300 600 900 1200

✎ � ✁ ✂ ✄ ☎

Time [s]

✆ ✝ ✞ ✟

VM

01-07

VM

08-14

Host A Host B

0

50

100

C
P

U

CPU_ALL(A)

0

50

100

M
E

M

MEM_ALL(A)

0

50

100

M
B

W

MBW_ALL(B)

0

50

100

C
P

U

CPU_ALL(B)

0

50

100

M
E

M

MEM_ALL(B)

0

50

100

M
B

W

MBW_ALL(B)

Figure 7: A-DRM execution timeline

The architecture-aware DRM policy is then invoked.
Upon execution of the first phase of Algorithm 1, A-DRM
selects one VM on Host A, which provides the maximum
benefit based on our cost-benefit analysis and migrates it to
Host B. Then, upon execution of the second phase of the
algorithm, A-DRM selects a VM from Host B to re-balance
the CPU utilization between the two hosts. As a result of the
execution of both phases, the VM-to-host mapping changes,
as shown in B . Note that after time 2 , when this migra-
tion is completed, the memory bandwidth usage of Host B
increases due to the migrated VM.

Furthermore, it is important to note that while the band-
width usage of Host B increases, the bandwidth usage of
Host A does not decrease even though gromacs has lower
memory-bandwidth usage than STREAM. This is because
the freed up memory bandwidth is used by the remaining
VMs. Hence, at the next scheduling point (600 seconds, 3),
A-DRM detects bandwidth contention and invokes the two
phases of the architecture-aware DRM policy and performs
another migration. The result is the VM-to-host mapping
in C . This process then repeats again at the 900 second
scheduling point (5), resulting in the VM-to-host mapping
in D . At this point, the memory bandwidth utilization of the
two hosts are similar. Hence, the cost-benefit analysis pre-
vents A-DRM from migrating any further VMs, since there
is no benefit obtainable from such migrations.

Figure 8 shows the performance of four representative
VMs from this experiment. VM06 and VM08 are initially
located on Host A and Host B respectively. At the 300-
second scheduling point in Figure 7, VM06 is migrated from
Host A to Host B, while VM08 is migrated from Host B to
Host A. VM07 and VM12 remain on Host A and Host B
respectively and are not migrated.

Figure 8a presents the IPC for VM06, which runs
STREAM and has high memory bandwidth demand. After
migration (at 300 seconds), the IPC of VM06 increases sig-
nificantly. At the 600-second scheduling point, VM06’s per-
formance degrades since another VM is migrated from Host
A to Host B. As VMs are migrated away from Host A,

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

 0 300 600 900 1200

IP
C

a. VM06-STREAM from Host A to Host B

Traditional DRM
A-DRM

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

 0 300 600 900 1200

IP
C

b. VM08-gromacs from Host B to Host A

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

 0 300 600 900 1200

IP
C

c. VM07-STREAM on Host A

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

 0 300 600 900 1200

IP
C

d. VM12-gromacs on Host B

Figure 8: IPC of VMs with A-DRM vs. Traditional DRM

VM07’s (which remains on Host A) performance (Figure 8c)
improves significantly (at 600 and 900 seconds).

A potential concern is that the VMs running gromacs may
experience performance degradation when co-located on the
same host as STREAM. However, Figure 8b and Figure 8d
show that VM08 , the VM migrated from Host B to Host A
and VM12, the VM remaining on Host B experience only a
slight drop in performance, since gromacs does not require
significant memory bandwidth.3 Therefore, we conclude that
by migrating VMs appropriately using online measurement
of microarchitecture-level resource usage, A-DRM alleviates
resource contention, achieving better performance for con-
tended VMs. Furthermore, the cost-benefit analysis prevents
migrations that would not provide benefit.

6.3 Performance Studies for Heterogeneous Workloads
Our evaluations until now have focused on a homogeneous
workload, to help better understand the insights behind A-
DRM. In a real virtualized cluster, however, there exist a va-
riety of heterogeneous workloads, showing diverse resource
demands. In this section, we evaluate the effectiveness of A-
DRM for such heterogeneous workloads.

Figure 9 presents the improvement in harmonic mean
of IPCs (across all VMs in a workload) for 30 workloads,
from our experiments on a 4-node cluster. We run 7 VMs on
each node, making up a total of 28 VMs. Each VM runs a
benchmark, which is selected randomly from Table 2. Each
workload iXnY-Z, consists of X VMs that run memory-
intensive applications and Y VMs that run non-intensive
applications. We evaluate two different workloads for each
intensity composition, the number of which is denoted by
Z. For instance, i12n16-1 means that 12 VMs are memory-
intensive and 16 VMs are memory-non-intensive (randomly
selected from Table 2), and this is the first workload with this
particular intensity composition.

We draw three main conclusions from Figure 9. First, A-
DRM improves performance by up to 26.55%, with an av-
erage improvement of 9.67% across all our 30 workloads,
compared to traditional DRM [34]. Second, A-DRM outper-
forms traditional DRM for all 30 workloads, indicating that
microarchitecture-level interference-awareness is an impor-

3 The IPC of VM08 and VM12 drops for a brief period around 900 second
since we run gromacs repeatedly throughout the experiment and its first run
finishes at 900 seconds.

9

0
2
4
6
8
10
12
14

N
u

m
b

e
r

o
f

M
ig

ra
ti

o
n

s

0%
5%
10%
15%
20%
25%
30%

i0
7
n
2
1
-1

i0
7
n
2
1
-2

i0
8
n
2
0
-1

i0
8
n
2
0
-2

i0
9
n
1
9
-1

i0
9
n
1
9
-2

i1
0
n
1
8
-1

i1
0
n
1
8
-2

i1
1
n
1
7
-1

i1
1
n
1
7
-2

i1
2
n
1
6
-1

i1
2
n
1
6
-2

i1
3
n
1
5
-1

i1
3
n
1
5
-2

i1
4
n
1
4
-1

i1
4
n
1
4
-2

i1
5
n
1
3
-1

i1
5
n
1
3
-2

i1
6
n
1
2
-1

i1
6
n
1
2
-2

i1
7
n
1
1
-1

i1
7
n
1
1
-2

i1
8
n
1
0
-1

i1
8
n
1
0
-2

i1
9
n
0
9
-1

i1
9
n
0
9
-2

i2
0
n
0
8
-1

i2
0
n
0
8
-2

i2
1
n
0
7
-1

i2
1
n
0
7
-2

a
v
e
ra
g
e

IP
C

 I
m

p
ro

v
e

m
e

n
t

[%
]

Figure 9: IPC improvement compared to Traditional DRM for different workloads (top), and number of migrations (bottom)

0%
10%
20%
30%
40%
50%

R
e

d
u

ct
io

n
 i

n

M
a

x
im

u
m

S
lo

w
d

o
w

n
 [

%
]

0%
1%
2%
3%
4%
5%
6%
7%

i0
7
n
2
1
-1

i0
7
n
2
1
-2

i0
8
n
2
0
-1

i0
8
n
2
0
-2

i0
9
n
1
9
-1

i0
9
n
1
9
-2

i1
0
n
1
8
-1

i1
0
n
1
8
-2

i1
1
n
1
7
-1

i1
1
n
1
7
-2

i1
2
n
1
6
-1

i1
2
n
1
6
-2

i1
3
n
1
5
-1

i1
3
n
1
5
-2

i1
4
n
1
4
-1

i1
4
n
1
4
-2

i1
5
n
1
3
-1

i1
5
n
1
3
-2

i1
6
n
1
2
-1

i1
6
n
1
2
-2

i1
7
n
1
1
-1

i1
7
n
1
1
-2

i1
8
n
1
0
-1

i1
8
n
1
0
-2

i1
9
n
0
9
-1

i1
9
n
0
9
-2

i2
0
n
0
8
-1

i2
0
n
0
8
-2

i2
1
n
0
7
-1

i2
1
n
0
7
-2

a
v
e
ra
g
eW

e
ig

h
te

d
 S

p
e

e
d

u
p

Im
p

ro
v

e
m

e
n

t
[%

]

Figure 10: Weighted Speedup (top) and Maximum Slowdown (bottom) normalized to Traditional DRM for different workloads

tant factor to consider for effective virtualized cluster man-
agement. Third, A-DRM provides the highest improvements
when the number of memory-intensive and memory-non-
intensive benchmarks is similar, since it is possible to derive
significant benefits from balancing demand for cache capac-
ity and memory bandwidth effectively in such workloads.

Figure 9 also shows the number of migrations with A-
DRM. The number of migrations with traditional DRM is
zero, since the CPU/memory capacity utilization among the
four hosts are similar, as a result of which no migrations are
initiated. On the contrary, for A-DRM, this number ranges
from 2 to 14 (6 on average).

Figure 10 shows each workload’s weighted speedup
and maximum slowdown (experienced by any VM in a
workload) with A-DRM normalized to traditional DRM.
A-DRM’s average weighted speedup improvement is 3.4%
(maximum 6.7%). A-DRM reduces the maximum slowdown
by 13% (up to 48%). These results indicate that A-DRM
provides high performance benefits, while also ensuring that
VMs are not slowed down unfairly.

0.90

0.95

1.00

1.05

1.10

1.15

1.20

CPU MEM MBW

N
o

r
m

a
li

z
e

d
 R

e
s
o

u
rc

e

U
t
il

iz
a

ti
o

n

Traditional DRM A-DRM

Figure 11: Cluster-wide resource utilization

Figure 11 shows the cluster-wide utilization of CPU,
memory capacity and memory bandwidth. We observe that

A-DRM enhances the memory bandwidth utilization by 17%
on average, compared to traditional DRM, while maintain-
ing comparable CPU and memory capacity utilization.

6.4 Parameter Sensitivity
The performance of A-DRM can be affected by control
knobs such as the MBWThreshold, live migration timeout,
and the sliding window size (see Section 4). To evaluate
the impact of these different parameters, we conduct sev-
eral sensitivity studies with the workload we use in our case
study (Figure 7), composed of STREAM and gromacs (on a
two-node cluster).

Memory bandwidth threshold. Figures 12 and 13
show the performance and the number of migrations when
we vary the MBWThreshold from 50% to 80%. When
MBWThreshold is too small (50%), A-DRM identifies a host
as bandwidth-starved too often, thereby triggering too many
migrations, which can incur high overhead. On the contrary,
if MBWThreshold is too large (> 60%), contention might
go undetected. In fact, we see that there are no migrations
when the MBWThreshold is 70% or 80%. We see that an
MBWThreshold of 60% achieves a good tradeoff.

Live migration timeout. Figure 14 shows how the live
migration timeout parameter affects A-DRM. We vary the
parameter from 5 to 60 seconds. When it is too small,
the migration essentially defaults to a stop and copy tech-
nique [35], causing very long downtime. On the other hand,
when it is too large, the tracking and transferring of mod-
ified pages could consume significant resources, which ag-

10

gravates the interference problem. We use a live migration
timeout of 30 seconds that balances these two factors.

Sliding window size. Figure 15 shows the performance
when we set the size of the sliding window to 20, 40, 60 and
80 samples respectively. The sliding window mechanism is
applied to get smooth moving average values of the profiled
metrics. If the size of the sliding window is too small, the
moving average of the profiled data will be sharp, causing
spurious changes to trigger A-DRM to migrate VMs. On
the contrary, if the size of the sliding window is too large,
the moving average will change slowly, resulting in A-DRM
being less adaptive. We see that a value of 80 provides good
performance.

0

0.1

0.2

0.3

0.4

0.5

50% 60% 70% 80%

IP
C

 (
H

a
rm

o
n

ic
 M

e
a

n
)

Figure 12: Perf. sensitivity to
MBWThreshold

0

4

8

12

16

50% 60% 70% 80%

N
u

m
b

e
r

o
f

M
ig

ra
ti

o
n

s

Figure 13: Migrations sensitiv-
ity to MBWThreshold

0

0.1

0.2

0.3

0.4

0.5

5s 30s 60s

IP
C

 (
H

a
rm

o
n

ic
 M

e
a

n
)

Figure 14: Sensitivity to live mi-
gration timeout

0

0.1

0.2

0.3

0.4

0.5

20 40 60 80

IP
C

 (
H

a
rm

o
n

ic
 M

e
a

n
)

Figure 15: Sensitivity to sliding
window size

6.5 Sensitivity to Workload Intensity
Figure 16 shows the IPC improvement when we vary the
memory intensity of the workload. Specifically, we use
the same benchmarks and the same two-node cluster used
in Figure 7, but change the number of VMs that run the
memory-intensive workload. Note that in Figure 7, we only
conduct experiments for the i07n07 case.

This figure shows that when the number of memory-
intensive VMs in a workload is less than 5, A-DRM hardly
performs any migrations, achieving similar performance as
traditional DRM. When the number of memory-intensive
VMs ranges from 5 to 10, A-DRM performs a number of
migrations and improves performance significantly. When
the number of memory-intensive VMs increases beyond 10,
there are very few migrations. Upon further investigation,
we discovered the reason for this behavior. Our experimental
host has two sockets and each socket has 4-cores, its own on-
chip memory controller and local memory (8GB DRAM).
Hence, when the number of VMs running memory-intensive
applications is smaller than or equal to 4, the socket-level mi-
gration (enabled by the NUMA AUTO BALANCING fea-
ture in the Linux kernel) places each memory-intensive VM
on a different socket. Therefore, A-DRM does not need to
do any migrations. On the contrary, when the number of
memory-intensive VMs is larger than 10, all sockets/hosts
are similarly congested, which does not offer opportunity for
A-DRM to kick in and migrate VMs. We conclude that A-

DRM provides the highest benefits for workloads that have
a mix of both memory-intensive and memory-non-intensive
applications.

 0

 5

 10

 15

 20

 25

i0
0n

14

i0
1n

13

i0
2n

12

i0
3n

11

i0
4n

10

i0
5n

09

i0
6n

08

i0
7n

07

i0
8n

06

i0
9n

05

i1
0n

04

i1
1n

03

i1
2n

02

i1
3n

01

i1
4n

00 A
M

R
el

at
iv

e
IP

C
 I

m
p
ro

v
em

en
t

[%
]

Figure 16: A-DRM Perfor-
mance improvement for
different workload intensities

 0

 5

 10

 15

 20

 25

i0
0n

14

i0
1n

13

i0
2n

12

i0
3n

11

i0
4n

10

i0
5n

09

i0
6n

08

i0
7n

07

i0
8n

06

i0
9n

05

i1
0n

04

i1
1n

03

i1
2n

02

i1
3n

01

i1
4n

00 A
M

R
el

at
iv

e
IP

C
 I

m
p
ro

v
em

en
t

[%
]

Figure 17: A-DRM Performance
improvement using socket and
host-level migration

6.6 Detecting Per-Socket Contention
While analyzing these results, we were curious to
observe what would happen if we turned off the
NUMA AUTO BALANCING feature and instead, detected
contention at a per-socket level and initiate migrations even
when a single socket on a host is contended (rather than all
sockets contended). Figure 17 presents results from this ex-
periment.

Comparing Figure 17 with Figure 16 shows that when
we detect and respond to socket level interference (while
turning off NUMA AUTO BALANCING), we achieve bet-
ter IPC improvement than using just host-level migration. As
the number of VMs that run intensive workload increases,
the on-chip resources such as LLC and memory controller
become greater bottlenecks and socket-level microarchitec-
tural resource contention detection and appropriate VM mi-
gration is able to effectively mitigate this interference. We
still need to address some issues such as migration cost for
socket-level migration and interactions between the hypervi-
sor’s NUMA-aware mechanisms and VM migration. We will
investigate these issues further as part of our future work.

Another key lesson we learn from this study is that the
contention at the inter-socket interconnection network (such
as QPI [33] in our system) is not very high. During the
initial stages of designing A-DRM, we considered the in-
terconnect as one of the contended resources. However,
when we measured the QPI traffic, it was always low and
hardly ever contended. On analyzing this further, we see that
the NUMA AUTO BALANCING feature provided by the
Linux kernel tries to reduce the remote memory accesses by
employing appropriate vCPU scheduling and page migration
mechanisms, leading to low interconnect traffic.

7. Related Work
Our work tackles the problem of virtual machine manage-
ment in a cluster. We have already compared qualitatively
and quantitatively to traditional distributed resource man-
agement (DRM) schemes (e.g., [31, 34, 72]) that take into
account only OS-level metrics such as CPU and memory ca-
pacity utilization in making VM-to-host mapping decisions,
showing that our proposed A-DRM scheme provides signifi-
cant performance benefits over them.

DRM schemes. To our knowledge, there are few previ-
ous works on distributed resource management in a cluster

11

that are aware of microarchitecture-level interference. One
work by Ahn et al. [8] explores this direction by simply sort-
ing all the VMs in a cluster by last level cache misses, and
remapping the VMs to minimize the number of LLC misses
cluster-wide. Our proposed A-DRM scheme is more compre-
hensive with a detailed cost-benefit analysis, taking into ac-
count both memory bandwidth utilization and cache misses.

Various DRM polices have been proposed to manage a
virtualized cluster [31, 34, 72]. Wood et al. [72] propose
to use CPU, memory and network utilization to detect hot
spots and migrate VMs. Isci et al. [34] propose an accurate
method to estimate the runtime CPU demand of a work-
load. Based on this, they design a dynamic resource man-
agement policy that consolidates the VMs on under-utilized
hosts to other hosts to save energy. VMware DRS [31] is
a commercial product that enables automated management
of virtualized hosts. DRS constructs a CPU and memory re-
source pool tree, and estimates the CPU and active memory
demand of each VM, each host and each pool. After this
estimation phase, a top-down phase is invoked where each
child’s resource requirement and allocation is checked and
maintained. DRS uses an aggressive load balancing policy
that minimizes the standard deviation of all hosts’ CPU and
memory utilization. However, unlike A-DRM, none of these
schemes are aware of the underlying microarchitecture-level
shared resource contention.

Mitigating microarchitecture-level interference
through task and data mapping. Several research efforts
have developed task and data migration mechanisms within
a host, that take into account microarchitecture-level inter-
ference [9, 10, 18, 19, 24, 46, 49, 52, 67, 68, 70, 71, 74, 76].
Tang et al. [66] develop an adaptive approach to achieve
good thread-to-core mapping in a data center such that
threads that interfere less with each other are co-located.
Blagodurov et al. [12] observe that contention-aware algo-
rithms designed for UMA systems may hurt performance on
NUMA systems. To address this problem, they present new
contention management algorithms for NUMA systems.
Rao et al. [59, 60] observe that the penalty to access
the uncore memory subsystem is an effective metric to
predict program performance in NUMA multicore systems.
Liu et al. [45] observe the impact of architecture-level
resource interference on cloud workload consolidation and
incorporate NUMA access overhead into the hypervisor’s
virtual machine memory allocation and page fault handling
routines.

While all these works seek to tune performance within a
single node, we focus on a cluster of servers in a virtual-
ized environment. In such a virtualized cluster setting, VM
migration across hosts and DRM schemes that are aware
of microarchitecture-level interference enable the ability to
mitigate interference that cannot be mitigated by migrating
VMs within a single host.

Other approaches to mitigate microarchitecture-level
interference. Other approaches have been proposed to
mitigate microarchitecture-level interference. Some exam-
ples of such approaches are interference-aware memory

scheduling [39, 41, 42, 48, 50, 51, 63, 64], cache partition-
ing [36, 40, 57, 65, 73], page coloring [14, 44] and source
throttling [13, 20, 38, 54, 55]. These works likely enable
more efficient VM consolidation as they enable more effi-
cient and controllable utilization of the memory system, and
therefore are complementary to our proposal.

8. Conclusion
We present the design and implementation of A-DRM,
which, to our knowledge, is the first distributed resource
management (DRM) scheme that is aware of and that mit-
igates microarchitecture-level interference via VM migra-
tion. Unlike traditional DRM schemes that operate solely
based on operating-system-level metrics, A-DRM monitors
the microarchitecture-level resource usage (in particular,
memory bandwidth and shared last level cache capacity us-
age) of each virtualized host via an on-chip resource profiler,
in addition to operating-system-level metrics like CPU and
memory capacity utilization. A-DRM then performs a cost-
benefit analysis to determine which VMs should be mapped
to which hosts and achieves the new mapping through VM
migration.

We implement A-DRM on a KVM and QEMU platform.
Our extensive evaluations show that A-DRM can enhance the
performance of virtual machines by up to 26.55% (average
of 9.67%), under various microarchitecture interference lev-
els, compared to a traditional DRM scheme that is not aware
of microarchitecture-level interference [31, 34, 72]. A-DRM
also improves the average cluster-wide memory bandwidth
utilization by 17% (up to 36%).

Our work demonstrates a promising path to achieve
substantial improvements through microarchitectural-
interference-aware distributed resource management for
virtualized clusters. Our results show that being aware
of microarchitecture-level shared resource usage can
enable our A-DRM scheme to make more effective
migration decisions, thus improving performance and
microarchitecture-level resource utilization significantly.
We propose to explore more sources of microarchitectural
interference (e.g., interconnect bandwidth [16–18, 25, 26])
to further improve performance and resource utilization in
virtualized clusters, as part of future work.

Acknowledgments
We thank the anonymous reviewers for their constructive
feedback. We acknowledge the support of our industrial part-
ners, including Facebook, Google, IBM, Intel, Microsoft,
Qualcomm, Samsung, and VMware. This work is partially
supported by NSF (awards 0953246, 1212962, 1065112),
the Intel Science and Technology Center on Cloud Comput-
ing, the National High-tech R&D Program of China (863)
under grant No. 2012AA01A302, National Natural Science
Foundation of China (NSFC) under Grant Nos. 61133004,
61202425, 61361126011. Hui Wang is partially supported
by the China Scholarship Council (CSC). Lavanya Subra-
manian is partially supported by a Bertucci fellowship.

12

References
[1] Windows Azure.

http://www.windowsazure.com/en-un/.

[2] Amazon EC2. http://aws.amazon.com/ec2/.

[3] libvirt: The virtualization API. http://libvirt.org.

[4] NAS Parallel Benchmarks.
http://www.nas.nasa.gov/publications/npb.html.

[5] QEMU. http://qemu.org.

[6] SPEC CPU2006. http://www.spec.org/spec2006.

[7] STREAM Benchmark. http://www.streambench.org/.

[8] J. Ahn, C. Kim, J. Han, Y.-R. Choi, and J. Huh. Dynamic
virtual machine scheduling in clouds for architectural shared
resources. In HotCloud, 2012.

[9] M. Awasthi, D. W. Nellans, K. Sudan, R. Balasubramonian,
and A. Davis. Handling the problems and opportunities posed
by multiple on-chip memory controllers. In PACT, 2010.

[10] N. Beckmann, P.-A. Tsai, and D. Sanchez. Scaling dis-
tributed cache hierarchies through computation and data co-
scheduling. In HPCA, 2015.

[11] C. Bienia. Benchmarking Modern Multiprocessors. PhD
thesis, Princeton University, January 2011.

[12] S. Blagodurov, S. Zhuravlev, M. Dashti, and A. Fedorova. A
case for NUMA-aware contention management on multicore
systems. In USENIX ATC, 2011.

[13] K. K. Chang, R. Ausavarungnirun, C. Fallin, and O. Mutlu.
HAT: heterogeneous adaptive throttling for on-chip networks.
In SBAC-PAD, 2012.

[14] S. Cho and L. Jin. Managing distributed, shared L2 caches
through OS-level page allocation. In MICRO, 2006.

[15] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach,
I. Pratt, and A. Warfield. Live migration of virtual machines.
In NSDI, 2005.

[16] R. Das, O. Mutlu, T. Moscibroda, and C. Das. Application-
aware prioritization mechanisms for on-chip networks. In
MICRO, 2009.

[17] R. Das, O. Mutlu, T. Moscibroda, and C. R. Das. Aérgia:
exploiting packet latency slack in on-chip networks. In ISCA,
2010.

[18] R. Das, R. Ausavarungnirun, O. Mutlu, A. Kumar, and
M. Azimi. Application-to-core mapping policies to reduce
memory system interference in multi-core systems. In HPCA,
2013.

[19] M. Dashti, A. Fedorova, J. Funston, F. Gaud, R. Lachaize,
B. Lepers, V. Quema, and M. Roth. Traffic management: A
holistic approach to memory placement on NUMA systems.
In ASPLOS, 2013.

[20] E. Ebrahimi, C. J. Lee, O. Mutlu, and Y. N. Patt. Fairness
via Source Throttling: A configurable and high-performance
fairness substrate for multi-core memory systems. In
ASPLOS, 2010.

[21] D. Eklov, N. Nikoleris, D. Black-Schaffer, and E. Hagersten.
Bandwidth Bandit: Quantitative characterization of memory
contention. In PACT, 2012.

[22] S. Eyerman and L. Eeckhout. System-level performance
metrics for multiprogram workloads. IEEE Micro, (3), 2008.

[23] D. Gmach, J. Rolia, L. Cherkasova, G. Belrose, T. Turicchi,
and A. Kemper. An integrated approach to resource pool
management: Policies, efficiency and quality metrics. In
DSN, 2008.

[24] S. Govindan, J. Liu, A. Kansal, and A. Sivasubramaniam.
Cuanta: Quantifying effects of shared on-chip resource
interference for consolidated virtual machines. In SoCC,
2011.

[25] B. Grot, S. W. Keckler, and O. Mutlu. Preemptive virtual
clock: a flexible, efficient, and cost-effective QOS scheme for
networks-on-chip. In MICRO, 2009.

[26] B. Grot, J. Hestness, S. W. Keckler, and O. Mutlu. Kilo-NOC:
a heterogeneous network-on-chip architecture for scalability
and service guarantees. In ISCA, 2011.

[27] A. Gulati, I. Ahmad, and C. A. Waldspurger. PARDA:
Proportional allocation of resources for distributed storage
access. In FAST, 2009.

[28] A. Gulati, C. Kumar, I. Ahmad, and K. Kumar. BASIL:
Automated IO load balancing across storage devices. In
FAST, 2010.

[29] A. Gulati, A. Merchant, and P. J. Varman. mClock: Handling
throughput variability for hypervisor IO scheduling. In OSDI,
2010.

[30] A. Gulati, G. Shanmuganathan, I. Ahmad, C. Waldspurger,
and M. Uysal. Pesto: Online storage performance manage-
ment in virtualized datacenters. In SoCC, 2011.

[31] A. Gulati, A. Holler, M. Ji, G. Shanmuganathan, C. Wald-
spurger, and X. Zhu. VMware distributed resource manage-
ment: Design, implementation, and lessons learned. VMware
Technical Journal, 1(1):45–64, 2012.

[32] Intel. Performance Analysis Guide for Intel Core i7 Processor
and Intel Xeon 5500 processors.

[33] Intel. An Introduction to the Intel QuickPath Interconnect,
2009.

[34] C. Isci, J. Hanson, I. Whalley, M. Steinder, and J. Kephart.
Runtime demand estimation for effective dynamic resource
management. In NOMS, 2010.

[35] C. Isci, J. Liu, B. Abali, J. Kephart, and J. Kouloheris.
Improving server utilization using fast virtual machine
migration. IBM Journal of Research and Development, 55
(6), Nov 2011.

[36] R. Iyer. CQoS: a framework for enabling QoS in shared
caches of CMP platforms. In ICS, 2004.

[37] M. Kambadur, T. Moseley, R. Hank, and M. A. Kim.
Measuring interference between live datacenter applications.
In SC, 2012.

[38] O. Kayiran, N. C. Nachiappan, A. Jog, R. Ausavarungnirun,
M. T. Kandemir, G. H. Loh, O. Mutlu, and C. R. Das.
Managing GPU concurrency in heterogeneous architectures.
In MICRO, 2014.

[39] H. Kim, D. de Niz, B. Andersson, M. H. Klein, O. Mutlu,
and R. Rajkumar. Bounding memory interference delay in
cots-based multi-core systems. In RTAS, 2014.

[40] S. Kim, D. Chandra, and Y. Solihin. Fair cache sharing and
partitioning in a chip multiprocessor architecture. In PACT,
2004.

13

[41] Y. Kim, D. Han, O. Mutlu, and M. Harchol-Balter. ATLAS:
A scalable and high-performance scheduling algorithm for
multiple memory controllers. In HPCA, 2010.

[42] Y. Kim, M. Papamichael, O. Mutlu, and M. Harchol-Balter.
Thread cluster memory scheduling: Exploiting differences in
memory access behavior. In MICRO, 2010.

[43] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori.
kvm: the Linux Virtual Machine Monitor. In Proceedings of
the Linux Symposium, volume 1, 2007.

[44] J. Lin, Q. Lu, X. Ding, Z. Zhang, X. Zhang, and P. Sa-
dayappan. Gaining insights into multicore cache partitioning:
Bridging the gap between simulation and real systems. In
HPCA, 2008.

[45] M. Liu and T. Li. Optimizing virtual machine consolida-
tion performance on NUMA server architecture for cloud
workloads. In ISCA, 2014.

[46] J. Mars, L. Tang, R. Hundt, K. Skadron, and M. L. Soffa.
Bubble-Up: Increasing utilization in modern warehouse scale
computers via sensible co-locations. In MICRO, 2011.

[47] T. Moscibroda and O. Mutlu. Memory performance attacks:
Denial of memory service in multi-core systems. In USENIX
Security, 2007.

[48] T. Moscibroda and O. Mutlu. Distributed order scheduling and
its application to multi-core DRAM controllers. In PODC,
2008.

[49] S. P. Muralidhara, L. Subramanian, O. Mutlu, M. Kandemir,
and T. Moscibroda. Reducing memory interference in
multicore systems via application-aware memory channel
partitioning. In MICRO, 2011.

[50] O. Mutlu and T. Moscibroda. Stall-time fair memory access
scheduling for chip multiprocessors. In MICRO, 2007.

[51] O. Mutlu and T. Moscibroda. Parallelism-aware batch
scheduling: Enhancing both performance and fairness of
shared DRAM systems. In ISCA, 2008.

[52] R. Nathuji, A. Kansal, and A. Ghaffarkhah. Q-clouds:
Managing performance interference effects for QoS-aware
clouds. In EuroSys, 2010.

[53] M. Nelson, B.-H. Lim, and G. Hutchins. Fast transparent
migration for virtual machines. In USENIX ATC, 2005.

[54] G. Nychis, C. Fallin, T. Moscibroda, and O. Mutlu. Next
generation on-chip networks: What kind of congestion control
do we need? In HotNets, 2010.

[55] G. Nychis, C. Fallin, T. Moscibroda, and O. Mutlu. On-chip
networks from a networking perspective: Congestion and
scalability in many-core interconnects. In SIGCOMM, 2012.

[56] P. Padala, K.-Y. Hou, K. G. Shin, X. Zhu, M. Uysal, Z. Wang,
S. Singhal, and A. Merchant. Automated control of multiple
virtualized resources. In EuroSys, 2009.

[57] M. K. Qureshi and Y. N. Patt. Utility-based cache partitioning:
A low-overhead, high-performance, runtime mechanism to
partition shared caches. In MICRO, 2006.

[58] M. K. Qureshi, A. Jaleel, Y. N. Patt, S. C. Steely, and J. Emer.
Adaptive insertion policies for high performance caching. In
ISCA, 2007.

[59] J. Rao and X. Zhou. Towards fair and efficient SMP virtual
machine scheduling. In PPoPP, 2014.

[60] J. Rao, K. Wang, X. Zhou, and C.-Z. Xu. Optimizing virtual
machine scheduling in NUMA multicore systems. In HPCA,
2013.

[61] V. Seshadri, O. Mutlu, M. A. Kozuch, and T. C. Mowry. The
evicted-address filter: A unified mechanism to address both
cache pollution and thrashing. In PACT, 2012.

[62] A. Snavely and D. M. Tullsen. Symbiotic jobscheduling for a
simultaneous multithreaded processor. In ASPLOS, 2000.

[63] L. Subramanian, V. Seshadri, Y. Kim, B. Jaiyen, and O. Mutlu.
MISE: Providing performance predictability and improving
fairness in shared main memory systems. In HPCA, 2013.

[64] L. Subramanian, D. Lee, V. Seshadri, H. Rastogi, and
O. Mutlu. The blacklisting memory scheduler: Achieving
high performance and fairness at low cost. In ICCD, 2014.

[65] G. E. Suh, L. Rudolph, and S. Devadas. Dynamic partitioning
of shared cache memory. Journal of Supercomputing, 28(1),
2004.

[66] L. Tang, J. Mars, N. Vachharajani, R. Hundt, and M. L.
Soffa. The impact of memory subsystem resource sharing on
datacenter applications. In ISCA, 2011.

[67] L. Tang, J. Mars, and M. L. Soffa. Compiling for niceness:
Mitigating contention for QoS in warehouse scale computers.
In CGO, 2012.

[68] A. Tumanov, J. Wise, O. Mutlu, and G. R. Ganger.
Asymmetry-aware execution placement on manycore chips.
In SFMA, 2013.

[69] H. Vandierendonck and A. Seznec. Fairness metrics for multi-
threaded processors. IEEE CAL, February 2011.

[70] C. A. Waldspurger. Memory resource management in
VMware ESX server. In OSDI, 2002.

[71] C. Weng, Q. Liu, L. Yu, and M. Li. Dynamic adaptive
scheduling for virtual machines. In HPDC, 2011.

[72] T. Wood, P. Shenoy, A. Venkataramani, and M. Yousif. Black-
box and gray-box strategies for virtual machine migration. In
NSDI, 2007.

[73] Y. Xie and G. H. Loh. PIPP: Promotion/insertion pseudo-
partitioning of multi-core shared caches. In ISCA, 2009.

[74] H. Yang, A. Breslow, J. Mars, and L. Tang. Bubble-flux:
Precise online QoS management for increased utilization in
warehouse scale computers. In ISCA, 2013.

[75] K. Ye, Z. Wu, C. Wang, B. Zhou, W. Si, X. Jiang, and
A. Zomaya. Profiling-based workload consolidation and
migration in virtualized data centres. TPDS, 2014.

[76] S. Zhuravlev, S. Blagodurov, and A. Fedorova. Addressing
shared resource contention in multicore processors via
scheduling. In ASPLOS, 2010.

14

