
Beyond Synchronous: New Techniques for
External-Memory Graph Connectivity and

Minimum Spanning Forest ?

Aapo Kyrola, Julian Shun, and Guy Blelloch

Carnegie Mellon University
5000 Forbes Avenue, Pittsburgh, PA 15213, USA

{akyrola,jshun,guyb}@cs.cmu.edu

Abstract. GraphChi [16] is a recent high-performance system for exter-
nal memory (disk-based) graph computations. It uses the Parallel Sliding
Windows (PSW) algorithm which is based on the so-called Gauss-Seidel
type of iterative computation, in which updates to values are immedi-
ately visible within the iteration. In contrast, previous external memory
graph algorithms are based on the synchronous model where computa-
tion can only observe values from previous iterations. In this work, we
study implementations of connected components and minimum span-
ning forest on PSW and show that they have a competitive I/O bound
of O(sort(E) log(V/M)) and also work well in practice. We also show
that our MSF implementation is competitive with a specialized algo-
rithm proposed by Dementiev et al. [10] while being much simpler.

1 Introduction

Research on external-memory graph algorithms was an active field in the 1990s
and early 2000s, however not much work has been done on external-memory
algorithms for fundamental graph problems since then. Recently, fueled by the
interest to study large social networks and other massive graphs, there has been
renewed interest for large-scale disk-based graph computation. In 2012, Kyrola
et al. proposed GraphChi [16], which uses the Parallel Sliding Windows (PSW)
algorithm for external-memory graph computation with the vertex-centric pro-
gramming model. More recently, alternative solutions have been proposed, most
notably X-Stream [20] and TurboGraph [12]. TurboGraph works efficiently only
on modern Solid State Disks (SSD) that can support hundreds of thousands of
random disk accesses per second, while GraphChi and X-Stream work efficiently
even on traditional spinning disks.

In this paper, we study how GraphChi’s PSW technique can be used effi-
ciently to solve classic problems of graph connectivity and finding the minimum
spanning forest (MSF) of a graph. Analyzing PSW is particularly interesting,
since it expresses iterative computation using the so called Gauss-Seidel model

? This is an updated version of the paper appearing in the 2014 Symposium on Ex-
perimental Algorithms.

2 A. Kyrola, J. Shun, G. Blelloch

(abbreviated G-S)1 of computation in contrast to the Bulk Synchronous Parallel
(BSP) model of X-Stream. While in the BSP model program execution can only
observe values computed on the previous iteration, in the G-S model the most
recent value for any item is available for computation. We show by simulations
and theoretical analysis that the G-S model can reduce the number of costly
passes over the graph data significantly compared to BSP.

We show how to use PSW to write simple implementations of external-
memory (EM) algorithms for connected components and MSF, in contrast to
many previous algorithms that are difficult to implement. These algorithms take
advantage of the G-S form of computation. We describe a problem called min-
imum label propagation (MLP) in which vertices update its identifier with the
minimum of its identifier and its neighbors’ identifiers. We show that a G-S
implementation of this problem gives speedup over the traditional synchronous
implementation, and use it to compute connected components and MSF. Our
MSF algorithm is a graph contraction-based algorithm which repeatedly applies
a single step of MLP. We prove that it terminates in a logarithmic number of it-
erations, and has an expected I/O bound of O(sort(E) log(V/M)). We also show
experimentally that it is competitive with the only available external-memory
MSF implementation, while being much simpler. For connected components, we
present two algorithms—a simple one based on MLP that requires a number of
iterations proportional to the graph diameter, and one based on graph contrac-
tion (with the same I/O bound as for MSF). We show experimentally that for
low-diameter graphs, the label propagation algorithm is competitive, while the
contraction-based algorithm is efficient on general graphs.

2 Related Work

Chiang et al. [8] describe the first external-memory (deterministic) algorithm for
MSF, and it has an I/O complexity bound ofO(min(sort(V 2), log(V/M)sort(E))).
Kumar and Schwabe [14] give an improved deterministic algorithm with a bound
of O(sort(E) log(B) + log(V)scan(E)). Arge et al. [3] give a deterministic algo-
rithm requiring O(sort(E) log log(B)). The best I/O bound is for a randomized
algorithm by Abello et al. [1] using O(sort(E)) I/O’s with high probability. As
MSF can be used for connected components, these bounds apply for external-
memory connected components as well. There has been work on many other
external-memory graph algorithms as well (see [13] for a survey).

As far as we know, the only experimental work on external-memory con-
nected components is by Lambert and Sibeyn [17] and Sibeyn [21]. The imple-
mentations by Lambert and Sibeyn [17] do not have theoretical guarantees on
general graphs and the implementation by Sibeyn [21] is only provably efficient
for random graphs. For external-memory MSF, Dementiev et al. [10] present an
implementation which requires O(sort(E) log(V/M)) I/O’s in expectation.

1 We borrow terminology from the study of iterative linear system solvers.

New Techniques for External-Memory Graph Connectivity and MSF 3

Convergence of iterative asynchronous computation has been studied in other
settings, for example by Bertsekas and Tsitsiklis [5] for parallel linear system
solving and Gonzalez et al. [11] in the context of probabilistic graphical models.

3 Preliminaries

A graph is denoted by G = (V,E) where V is the set of vertices and E is a set
of tuples (u, v) such that u, v ∈ V . When clear from the context, we also use V
and E to refer to the number of vertices and number of edges in G, respectively.

I/O Model. Our analysis is based on the I/O model introduced by Aggar-
wal and Vitter [2]. The cost of a computation is the number of block transfers
from external memory (disk) to main memory (RAM) or vice versa, and any
computation that is done with data in RAM is assumed to be free. When mod-
eling the I/O complexity, the following parameters are defined: N is the number
of items in the problem instance, M is the number of items that can fit into
main memory, and B is the number of items per disk block transfer. Funda-
mental primitives for I/O efficient algorithms are scan and sort (generalized
prefix-sum). Their respective I/O complexities were derived by Aggarwal and
Vitter [2]: scan(N) = O(N/B) and sort(N) = O((N/B) log(M/B)(N/B)).

Jacobi (synchronous) and Gauss-Seidel (asynchronous) Computation.
We now define formally the semantics of the two different models of computation.
We borrow terminology from the numerical linear algebra literature since the
commonly used terms “synchronous” and “asynchronous” have various other
meanings in the context of numerical computation. In the following definitions,
we denote by xi(t) ∈ A to be the value of a variable xi (associated with an edge
or vertex indexed by i) after iteration t ≥ 1; x(0) is the initial value of x and A
is the domain of the variables.

Definition 1. Jacobi (synchronous) model: A function F that computes
xi(t) depends only on values from the previous iteration, i.e. F (v) := F ({xj(t−
1)}∀j)→ A.

To define the Gauss-Seidel computation, we define schedule, which deter-
mines the order of vertex “updates” in a vertex-centric computation.

Definition 2. Let π := V → {1, 2, ...|V |} be a bijective function. Then π(v)
defines an update schedule so that if π(u) < π(v), then vertex u will be updated
before vertex v.

The simplest schedule π(v) = v updates vertices in the order they are labeled
and is the default schedule used in GraphChi. In this paper, we study random
schedules where π is a uniformly random permutation. We now give a definition
of G-S computation that extends the traditional definition with a schedule:

Definition 3. Gauss-Seidel (asynchronous) model: A function F that com-
putes xi(t) uses the most recent values of its dependent variables. That is, F (v) :=
F ({xi(t)}i|π(i)<π(v) ∪ {xj(t− 1)}j|π(j)>π(v))→ A.

4 A. Kyrola, J. Shun, G. Blelloch

shard(1)

interval(1) interval(2) interval(P)

shard(2) shard(P)

1 |V| v1 v2 1: procedure PSW(G, updateFunc)
2: for interval Ii ⊂ V do
3: Gi := LoadSubgraph(Ii)
4: for v ∈ Gi.V do
5: updateFunc(v,Gi.E[v])

6: UpdateToDisk(Gi)

Fig. 1: Left: The vertices of graph (V,E) are divided into P intervals. Each interval

is associated with a shard, which stores all edges that have destination vertex in that

interval. Right: Pseudo-code for the main loop of Parallel Sliding Windows. Note that

both for-loops can iterate in random order.

Parallel Sliding Windows. We now introduce the framework used to imple-
ment the algorithms in this paper. Parallel Sliding Windows (PSW) is based on
the vertex-centric model of computation [16]. The state of the computation is
encapsulated in the graph G = (V,E), where V = {0, 1, . . . , |V | − 1}, E is a set
of ordered2 tuples (src, dst) such that src, dst ∈ V . We associate a value (data)
with each vertex and edge, denoted by dv and de respectively. PSW executes pro-
grams that are presented as imperative vertex update-functions with the form:
updateFunc(v,E[v]). This function is passed a vertex v, and arrays of the in-
and out-edges of the vertex (denoted as E[v], where E[v] = {(src, dst) | src ∈
V ∨ dst ∈ V }). The vertex data and the data for its incident edges are accessible
via pointer. Values of other vertices cannot be accessed. The update function is
executed on each vertex in turn (under some schedule), with Gauss-Seidel seman-
tics, i.e. changes to edge values are immediately visible to subsequent updates.

PSW executes the programs on a sequence of (partial) subgraphs Gi ⊂ G, i ∈
{1, .., P}, where each subgraph fits into memory. Each subgraph contains vertices
of a continuous interval Ii of vertices: I1 = {1, . . . , a1}, {a1+1, . . . , a2}, . . . , IP =
{aP−1, . . . , N} so that

⋃
i=1..P Ii = V and ∀i 6= j, Ii ∩ Ij = ∅. In addition to

vertex values, each subgraph contains all the edges of those vertices3. After
loading a subgraph, PSW executes the update function on the vertices and then
writes the changes to vertex and edge values back to disk (see the pseudo-code in
Fig. 1). Note that the order of processing the subgraphs, as well as the order that
the update function is invoked on the vertices of the subgraph, can be arbitrary.

We now describe how PSW stores the edges on disk, and how the vertex in-
tervals Ii are defined. Each interval I1 is associated with a file, called shard(i).
shard(i) stores all the in-edges (and their associated values) of vertices in in-
terval Ii (see Fig. 1). Moreover, the edges in a shard are stored in sorted order
based on their source vertex. The size of a shard must be less than the available
memory M , and is typically set to M/4. To create the shards, we first sort all the
edges based on their destination vertex ID, with an I/O cost of sort(E). Then
we create one shard at a time by scanning the sorted edges from the beginning,
and add edges to a new shard until it reaches its maximum size (after which

2 For undirected graphs, we simply ignore the direction and it can be chosen arbitrarily.
3 The subgraph is partial since it does not include vertex values for neighbors outside

of the interval.

New Techniques for External-Memory Graph Connectivity and MSF 5

Interval)1) Interval)2) Interval)3) Interval)4)

Shard 1 Shard 2 Shard 3 Shard 4 Shard 1 Shard 2 Shard 3 Shard 4 Shard 1 Shard 2 Shard 3 Shard 4 Shard 1 Shard 2 Shard 3 Shard 4

Fig. 2: Visualization of one iteration of PSW. In this example, vertices are divided into

four intervals, each associated with a shard. The computation proceeds by constructing

a subgraph of vertices one interval at a time. In-edges for the vertices are read from the

corresponding shard (in dark color) while out-edges are read from all of the shards.

the shards are sorted in-memory prior to storing on disk). The vertex intervals
and P are thus defined dynamically during the preprocessing phase. The second
phase has an I/O cost of scan(E).

Each shard is split into two components: an immutable adjacency shard and
a mutable data shard. Edges are stored in the adjacency shard as follows: for
each vertex u that has out-edges stored in the shard, we write u followed by its
number of edges. For each edge we store the neighbor vertex ID. The edge values
are stored in the data-shard as a flat array A so that A[i] has the value of ith

edge. For each interval we also store a flat array on disk containing the vertex
values for the vertices in the interval.

We now describe how the edges for a subgraph gi are loaded from disk. First,
the in-edges (and their values) for vertices in interval Ii are all contained in
shard(i). Thus, that shard is loaded completely into memory. Secondly, the out-
edges of the subgraph are contained in contiguous blocks in each of the shards,
since we had sorted the edges by their source ID in the preprocessing phase.
Note that we can easily store in memory the boundaries for the out-edges in
each shard. After loading the blocks containing the edge adjacencies and values,
we construct the subgraph in memory so that each edge is associated with a
pointer to the location in a block that was loaded from disk, so all modifications
are made directly to the data blocks. We can then execute the update function
on each of the vertices in interval Ii. After finishing the updates, the edge data
blocks are rewritten back to disk replacing the old data. Thus, all changes are
immediately visible to subsequent updates (for the next subgraph), giving us
Gauss-Seidel semantics (note that updates within each subgraph are done in a
G-S manner in memory). This process is illustrated in Fig. 2.

Theoretical Properties of PSW. PSW can process any graph that fits on
disk. The original GraphChi paper [16] states that there must be enough memory
to store any one vertex and its edges, but we later describe in Section 5 how
to get around this limitation. As described in [16], one iteration (pass) over
the graph, in which both in- and out-edges of vertices are updated, has cost
PSW (G), where 2(E/B) + (V/B) ≤ PSW (G) ≤ 4(E/B) + (V/B) +Θ(P 2).

For the Θ(P 2) term to not dominate the cost of PSW , we assume that
E < M2/(4B) (recall P = 4E/M). This condition is easily satisfied in prac-
tice as a typical value of M for a commodity machine is around 8 GB, a typ-
ical value of B is on the order of kilobytes and current available graph sizes
are less than a petabyte. Many algorithms only modify out-edges, and read

6 A. Kyrola, J. Shun, G. Blelloch

in-edges in which case the I/O complexity is only PSW (G)/2. PSW also re-
quires a preprocessing step for creating the shards, which has an I/O cost
of sort(E). Note that due to the assumption E < M2/(4B), we have that
sort(E) = O((E/B) logM/B(M2/(4B))) = O(E/B).

Graph Contraction with PSW. We can implement graph contraction under
the PSW framework by allowing update-functions to write edges to a file (in a
buffered manner). After the computation is finished, we create the contracted
graph from the emitted edges and remove duplicate edges in the process. This
has same cost as the preprocessing of the graph, which is sort(E). We can then
continue executing PSW on the newly created contracted graph.

4 Minimum Label Propagation

We use minimum label propagation (MLP) as a subroutine in our minimum
spanning forest algorithm. It can also be used directly to compute the connected
components of a graph. The algorithm works by initializing each vertex with
a label equal to its ID, and on each iteration, updating (in random order) the
vertices’ labels with the smallest of its neighbors’ labels and its own labels.

The pseudo-code for computing connected components with MLP is shown
in Algorithm 1. With PSW, and in the external-memory setting, vertices must
communicate their labels via edges. Each edge (u, v) has two fields, leftLabel
and rightLabel, where leftLabel contains the label of the smaller of u and v,
and rightLabel contains the label of the other vertex. The functions in lines 1–6
implement this logic. The vertex values are initialized with the vertex IDs on line
16. We note that if MLP is run until convergence (i.e. until all edges “agree”),
vertices in the same connected component will have the same label (in fact, if
MLP is run until convergence, each edge can store only one field as both vertices
will eventually have the same label).

Our algorithm executes the MLPUpdate update function (lines 8–14) using
PSW as long as any vertex changes its label during an iteration (lines 18–20).
MLPUpdate is passed a vertex and its edges. On line 11, it finds the minimum
label written to its incident edges by its neighbors. If that label is smaller than
the previous minimum label, it is written to all adjacent edges on line 14.

I/O Complexity. We analyze the number of iterations of MLP required until
all connected vertices in each connected component of a graph share the same
label. We refer to the the distance dist(u, v) between vertices u, v ∈ V as the
length of the path from u to v with the fewest number of edges. If u and v are
not connected, then dist(u, v) is undefined. The diameter of a graph, denoted
as DG, is the maximum dist(u, v) between any two connected vertices u, v ∈ V .
The following lemma states the number of iterations a synchronous computation
requires for convergence, and its proof is straightforward.

Lemma 1. Let the vertex with the minimum identifier be vmin. Then the Ja-
cobi (synchronous) computation of minimum label propagation requires exactly
maxv∈V dist(v, vmin) ≤ DG iterations to converge.

New Techniques for External-Memory Graph Connectivity and MSF 7

Algorithm 1 Minimum-label Propagation (MLP)

1: function GetNeighborLabel(vertex, edge)
2: if vertex.ID < edge.ID then return edge.rightLabel
3: else return edge.leftLabel

4: function SetMyLabel(vertex, edge, newLabel)
5: if vertex.ID < edge.ID then edge.leftLabel = newLabel
6: else edge.rightLabel = newLabel

7: global var changed
8: procedure MLPUpdate(vertex, vertexedges)
9: var minLabel = vertex.label

10: for edge ∈ vertexedges do
11: minLabel = min(minLabel, GetNeighborLabel(vertex, edge))

12: if vertex.label 6= minLabel then changed = true
13: vertex.label = minLabel
14: for edge ∈ vertexedges do SetMyLabel(vertex, edge, minLabel)

15: procedure RunMLP(G)
16: for vertex ∈ G.V do vertex.label = vertex.ID

17: changed = true
18: while changed = true do
19: changed = false
20: PSW(G, MLPUpdate)

Clearly, the Gauss-Seidel model requires at most as many iterations as the
synchronous model of computation so the I/O complexity is at most DG ×
PSW (G) = O(DG(V + E)/B). But with G-S, the computation can converge
in fewer iterations because on each iteration the minimum label can propagate
over multiple edges. We can study this analytically on a simple chain graph:
Let Cn be a chain graph with n vertices Vn = {1, 2, ..., n} and n − 1 edges
En = {(1, 2), (2, 3), ..., (n− 1, n)}.

Theorem 1. On a chain graph Cn, the expected number of iterations required
for the Gauss-Seidel computation for convergence of MLP is (n − 1)/(e − 1) ≈
0.582(n− 1). The synchronous computation requires exactly n− 1 iterations.

Proof. The smallest label is 1 (“minimum label”), and on each iteration the label
“advances” one or more steps towards the end of the chain. In the beginning of
an iteration, let u be the vertex furthest from vertex 1 (the beginning of the
chain) that has already assigned label 1. Vertex u + 1 will receive label 1 after
it is updated. Now, if π(u+ 2) > π(u+ 1), also vertex u+ 2 will receive label 1
during the same iteration. Similarly, if π(u+ 3) > π(u+ 2) > π(u+ 1), the label
reaches u + 3, and so on. We see that the probability that the minimum label
advances exactly k steps is the probability of a permutation π(u+ 1), . . . , π(u+
k), π(u + k + 1) where the permutation is ascending from π(u + 1) to π(u + k)
but π(u + k + 1) < π(u + k). The probability of such a permutation is k

(k+1)! .

Let X be the random variable denoting the number of steps the minimum label
advances in the chain during one iteration. Then for large n, E[X] approaches∑∞
k=1

k2

(k+1)! = e− 1. The theorem follows from this and Lemma 1.

8 A. Kyrola, J. Shun, G. Blelloch

5 Minimum Spanning Forest and Graph Contraction

Previous algorithms for computing the minimum spanning forest (MSF) in the
external-memory setting use different variations of graph contraction to recur-
sively solve the problem. We implement a variation of Boruvka’s algorithm [7]
on PSW, based on the MLP algorithm. On each iteration, Boruvka’s algorithm
selects the minimum weight edge of each vertex. These minimum edges are surely
part of the minimum spanning forest, and the induced graph consisting only of
these minimum edges is a forest. In Boruvka’s algorithm, each tree is contracted
into one vertex, edges are relabeled accordingly and the computation is repeated
on the contracted graph. Each edge in the contracted graph contains information
of its identity in the original graph so that the MSF edges can be identified.

Min-Label Contraction (MLC) Algorithm. The MLP algorithm described
in previous section can be used to implement graph contraction: Let (x, y) be the
labels stored on edge e = (u, v) after one or more iterations of MLP. Then, we
output edge (x, y) for the contracted graph, unless x = y. If there are multiple
copies of an edge (x, y) that are output for the new graph, they are merged into
one edge. The number of vertices in the new graph is equal to the number of
distinct labels at the end of last MLP iteration. See the description at the end
of Sec. 3 for details on how the contraction step is implemented.

MSF: One-Iteration Min-Label Contraction on a Forest. The pseudo-
code for our MSF algorithm is shown in Algorithm 2. A super-step of the algo-
rithm (lines 19–23) consists of three invocations of PSW. The first PSW executes
the ChooseMinimum update function (lines 2–4), which marks the minimum
weighted edge of each vertex by setting the inMSF field of the edge data. These
minimum edges are part of the MSF, and induce a collection of subtrees (a for-
est) on the graph. The second PSW execution is similar to the MLP algorithm
(Algorithm 1), but the minimum labels are selected only among edges that have
inMSF set to true. On line 19, we initialize a new graph and then output rela-
beled edges to the new graph. The third PSW execution contracts the graph and
writes it to file by calling the update function ContractionStep (lines 11-16).
Finally, on line 23 we preprocess the new graph into shards that can be used for
PSW on the next iteration. Note that we have omitted details on keeping track
of the original identity of each edge.

In contrast to Boruvka’s algorithm, our algorithm runs only one iteration of
propagation and contraction per super-step. This does not guarantee that the
trees will be completely contracted, but we will derive a lower bound on the
number of vertices contracted on each step. In the G-S setting we assume that
the unique labels are adversarial but the schedule of the vertices is random.
Denote the label of a vertex v at the beginning of an iteration by l(v). We only
need to consider the min-label contraction problem on a tree. We want to show
that a constant number of vertices will be contracted in each iteration, which
allows us to bound the number of iterations of MSF by O(log(V/M)).

New Techniques for External-Memory Graph Connectivity and MSF 9

Algorithm 2 Minimum Spanning Forest using PSW

1: global var outfile
2: procedure ChooseMinimum(vertex, vertexedges)
3: var minEdge = [find minimum weighted edge of vertexedges]
4: minEdge.inMSF = true

5: procedure MinimumLabelPropOneIter(vertex, vertexedges)
6: var minLabel = vertex.value
7: for edge ∈ vertexedges do
8: if edge.inMSF then
9: minLabel = min(minLabel,GetNeighborLabel(vertex, edge))

10: for edge ∈ vertexedges do SetMyLabel(vertex, edge,vertex.label)

11: procedure ContractionStep(vertex, vertexedges)
12: for e ∈ vertexedges do
13: if e.dst = vertex.ID then
14: if e.leftLabel 6= e.rightLabel then
15: writeEdge(outfile, e.leftLabel, e.rightLabel, e.value)

16: if e.inMSF then outputToMSFFile(e)

17: procedure RunMSF(G)
18: while |G.E| > 0 do
19: PSW(G, ChooseMinimum)
20: PSW(G, MinimumLabelPropOneIter)
21: outfile = [initialize empty file]
22: PSW(G, ContractionStep)
23: G = PreprocessNewGraph(outfile)

Fact 1 The number of degree-one (leaves) and degree-two vertices in a tree of
V nodes is at least V/3.

By Fact 1, we only need to consider the expected number of leaves and degree-
two vertices contracted. In our algorithm, all vertices with the same label will
be contracted into one. If a vertex ends up with the same label as a neighbor, at
least one of the two will be contracted. Among the vertices with the same label,
the vertex that is contracted can be chosen randomly. So on average, a vertex
with the same label as a neighbor is contracted with at least 1/2 probability.

Lemma 2. For a tree with V1 leaves, the expected number of leaves contracted
is at least V1/16.

Proof. Consider the ID of a leaf v and its neighbor w. There are two cases:
(1) l(w) < l(v) and (2) l(v) < l(w). In case (1), if π(w) < π(v) then v will
get the same label as w. There is a 1/2 probability of the event π(w) < π(v).
In case (2), fix the ordering with respect to π for all vertices except v and w.
Let π(x) = max(π(w), π(v)). Consider the permutation from the start to π(x)
excluding π(w) and π(v). There are two sub-cases: (2a) the permutation causes
the ID of w to become smaller than l(v) after w is executed, and (2b) the
permutation does not cause the ID of w to become smaller than l(v) after w is
executed. In case (2a), if π(w) < π(v) then v will end up with the same label as
w. In case (2b), if π(v) < π(w) then w will end up with the same label as v. This

10 A. Kyrola, J. Shun, G. Blelloch

is true because we know that all vertices before w do not reduce w’s label to
below l(v). Consider the event where V/4 < π(w) < 3V/4, which happens with
1/2 probability. Conditioned on this event, the probability of the desired ordering
of π(w) and π(v) in either case (2a) or (2b) is at least 1/4 because π(v) ≤ V/4 or
π(v) ≥ 3V/4 each happen with probability 1/4 no matter what π(w) is (it must
be between V/4 and 3V/4). Thus for any initial labeling of the vertices, a leaf
must fall into either case (1) or case (2), and have a (1/2)·(1/4) = 1/8 probability
of having the same label as its neighbor. A leaf with the same label as its neighbor
is contracted with at least 1/2 probability. By linearity of expectations, at least
V1/16 leaves are contracted.

Lemma 3. For a tree with V2 degree-2 vertices, the expected number of degree-2
vertices contracted is at least V2/24.

Proof. Consider a degree-2 vertex v with neighbors u and w. If π(v) < π(u) <
π(w) or π(u) < π(v) < π(w) then w will not affect the resulting labels of v
or u. Similarly if π(v) < π(w) < π(u) or π(w) < π(v) < π(u) then u will not
affect the resulting labels of v or w. In either of these cases, we can consider u
as a leaf and use the analysis of Lemma 2 because the neighbor that is after v
in π does not affect whether v will be contracted. One of these two cases will
happen with 2/3 probability. In the other orderings of u, v and w according to
π we pessimistically assume that v is not contracted. Thus a degree-2 vertex
will be contracted with at least (2/3) · (1/16) = 1/24 probability. By linearity
of expectations, the expected number of degree-2 vertices contracted is at least
V2/24.

By applying Fact 1 and Lemmas 2 and 3, we have the following theorem:

Theorem 2. For a tree with V vertices, the number of vertices contracted in
one iteration of min-label contraction is at least V/72.

We note that our analysis applies for any (adversarial) labeling of the vertices.

Corollary 1. The I/O complexity of our MSF algorithm is O(sort(E) log(V/M)).

Proof. By Theorem 2, after at most log72 V − log72M = O(log(V/M)) itera-
tions, the number of vertices remaining will be at most M , at which point we
can switch to a semi-external algorithm. Each iteration of the MSF algorithm
requires O(sort(E)) I/O’s. The result follows.

Our I/O complexity is worse than the O(sort(E)) bound of Abello et al. [1],
but matches the bound of the only available external-memory MSF implemen-
tation by Dementiev et al. [10].

Dealing with Very High Degree Vertices. The original version of PSW
requires any vertex and its edges to fit in memory. With the contraction proce-
dure described earlier, it is possible that a vertex in the contracted graph gets
many edges, possibly more than O(M). We can address this issue by storing such
high-degree vertices in their own shards. To find the minimum weighted edge or

New Techniques for External-Memory Graph Connectivity and MSF 11

a neighbor ID, the order of the edges does not matter, so we can process such
shards in parts, such that each part fits in memory. Since such shards only store
edges for one vertex, this does not affect G-S semantics, and the I/O complexity
bounds remain unchanged. Note that using this procedure, we can even remove
the degree restriction on vertices in the original graph.

Connected Components. We can use the one-iteration MLC algorithm to
compute connected components also. Instead of choosing the edge with mini-
mum weight, each vertex chooses the neighbor with the minimum ID. During
contraction, for each contracted vertex we keep pairs (v, p(v)) where p(v) is the
ID of its neighbor. On the way back up from the recursion we can relabel each
vertex to be the same as its neighbor’s label. Since the labels for the remaining
are computed recursively we also have a list of pairs for them. This can be done
by sorting the contracted vertex pairs by p(v) and the remaining vertex pairs by
v, and scanning them in parallel as done in [1]. The cost is O(sort(V)+scan(V))
per iteration, which is within our complexity bounds stated in Corollary 1.

6 Experiments

We use the following real-world and synthetic graphs in our experiments. twit-
ter rv is a graph of the Twitter social network with 41.7M vertices and 1.47B
edges [15]. uk-2007-05 is a subset of the UK WWW-network with 105M ver-
tices and 3.8B edges [6]. The web-Google graph is a small web-graph with 0.5M
vertices and 5M edges [18]. The live-journal graph is a social network graph
with 5M vertices and 68M edges [4]. The first two are among the largest real-
world graphs publicly available. We use synthetic k-grid graphs—each of the
k-dimensional grids contain 100k vertices, where each vertex has an edge to each
of its 2k neighbors. The chain graph is a 1-D grid graph.

Min-Label Propagation Simulations. To our knowledge, it remains an open
question to obtain a closed-form expression for the number of Gauss-Seidel it-
erations for MLP convergence on general graphs. Fortunately, it is simple to
run simulations on arbitrary graphs and in Fig. 3, we show results on our input
graphs. For the G-S computation, we randomized the schedule.

 0

 50

 100

 150

 200

 250

 300

 350

 400

chain 2d-grid 3d-grid 4d-grid

N
u
m

b
e
r

o
f

it
e
ra

ti
o
n
s

Comparison of Convergence Rates

Synchronous
Gauss-Seidel

 0

 10

 20

 30

 40

 50

 60

 70

 80

twitter_rv uk-2007-05 web-Google live-journal

N
u
m

b
e
r

o
f

it
e
ra

ti
o
n
s

Comparison of Convergence Rates

Synchronous
Gauss-Seidel

Fig. 3: Number of iterations required for convergence for synchronous and Gauss-Seidel

label propagation on various graphs.

12 A. Kyrola, J. Shun, G. Blelloch

We see that the G-S computation always requires fewer iterations than the
synchronous computation. The highest speedup in terms of number of iterations
G-S achieves over Jacobi iterations is a 10-fold speedup on the 4d-grid. We note
that on the grids, the advantage of G-S improves when the dimensionality (and
thus the average number of edges) increases. Our intuition for this phenomenon is
that between any pair of vertices, the number of possible paths for the minimum
label to propagate increases rapidly with the average degree of vertices.

Graph Contraction Simulations. In Theorem 2 we proved that at least a
V/72 fraction of the vertices contract on each iteration. However, we found that
the rate of contraction is much higher in practice. Although for MSF we only
need to apply the one-iteration min-label contraction on trees, we conjecture
that our contraction technique also works well on general graphs. We confirm the
efficiency of the contraction technique by simulation. We compare our algorithm
to Reif’s random mate technique [19], where in each iteration vertices flip coins,
and vertices that flipped “tails” pick a neighbor that flipped “heads” (if any) to
contract with. Random mate gives the same I/O complexity as our algorithm
since it contracts a constant fraction of the vertices per iteration. The simulation
results are shown in Fig. 4. We see that for all input graphs, Gauss-Seidel under
a randomized schedule achieves a better contraction rate (60–80%) rate than
the synchronous version. The contraction rate observed is much higher than
the bound indicated in Theorem 2. We see that both the synchronous and G-S
versions of our algorithm achieve a higher contraction rate than random mate.

 0

 0.2

 0.4

 0.6

 0.8

 1

chain

2d-grid

3d-grid

binary tree

web-Google

live-journal

Fr
a
ct

io
n
 o

f
v
e
rt

ic
e
s

co
n
tr

a
ct

e
d

Comparison of one-iteration min-label contraction rates

Synchronous
Gauss-Seidel

Random Mate

Fig. 4: The fraction of vertices contracted in one-iteration min-label contraction on

various graphs. The binary tree has 4000 vertices.

Connected Components. We implemented two version of connected com-
ponents on GraphChi (PSW). The first version runs the MLP algorithm until
convergence. The implementation contains a simple optimization: if all vertices
in a subgraph have converged, it is not reprocessed. This optimization requires
only O(P) memory. The second version is based on the one-iteration min-label
contraction technique described in Section 5. One optimization we used was
that instead of inducing a collection of subtrees per iteration (as in MSF), we
did propagation over all of the edges. We found this to work much better in
practice. The timing results are shown in Fig. 5 (left). All experiments were run
on a MacMini (2011) with an Intel I5 CPU, 8 GB of RAM, and a 1 TB rotational
hard drive. The results clearly confirm that on low-diameter real-world graphs
the MLP version works well, but with the grid that has very high diameter,

New Techniques for External-Memory Graph Connectivity and MSF 13

the contraction-based algorithm is orders of magnitudes faster. On real-world
graphs, the contraction algorithm is also competitive, and actually outperforms
the MLP version on the large uk-2007-05 web graph. Unfortunately, we could
not compare with the implementation of Sibeyn [21] as it is unavailable.

Minimum Spanning Forest. Perhaps due to the difficulty of realizing the
algorithms, the only other implemented external memory MSF algorithm is due
to Dementiev et al. [10], which is available as an open-source implementation
using STXXL [9]. In Fig. 5 (right) we show timing results on various graphs,
using a 8-CPU AMD server with 32 GB of RAM and a rotational SCSI hard
drive (we could not compile Dementiev’s algorithm on the Mac Mini.). Based
on the results, we see that neither algorithm is the clear winner, but the relative
difference varies strongly between different graphs. This is not surprising since
they employ different graph contraction techniques. This shows that our algo-
rithm using PSW is competitive with a special-purpose MSF implementation.
The advantage of our algorithm is that it is much simpler (requiring only tens
of lines of simple code), being part of a general purpose framework.

 1

 10

 100

 1000

 10000

chain 2K

grid 2K x 2K

live-journal

twitter_rv

uk-2007-05

R
u
n
n
in

g
 t

im
e
 (

se
co

n
d

s)

Running times for CC

MLP CC
Contraction CC

 10

 100

 1000

 10000

 100000

chain 20M

grid 20K x 20K

live-journal

twitter-rv

uk-2007-05

R
u
n
n
in

g
 t

im
e
 (

se
co

n
d

s)

Running times for MSF

PSW MSF
Dementiev MSF

Fig. 5: Left: Timings for the MLP CC algorithm vs. contraction-based CC algorithm.

Right: Timings for the PSW MSF algorithm vs. the Dementiev et al. [10] implemen-

tation. The numbers are averages—the standard deviations were less than 10%.

7 Conclusion

We have presented simple external-memory algorithms for connected compo-
nents and minimum spanning forest implemented using GraphChi, and have
proven an I/O complexity bound competitive with the only previous implemen-
tations for the problems. Our algorithms take advantage of the Gauss-Seidel
type of computation, which leads to an improvement in convergence rate over
the synchronous type of computation used in previous external-memory algo-
rithms for these problems. Parallel Sliding Windows is an exciting development
in the research of external-memory graph algorithms as they provide a generic
framework for designing and implementing simple and practical algorithms.

Acknowledgements. This work is supported by the National Science Foun-
dation under grant number CCF-1314590. Kyrola is supported by a VMware
Graduate Fellowship. Shun is supported by a Facebook Graduate Fellowship.

14 A. Kyrola, J. Shun, G. Blelloch

References

1. Abello, J., Buchsbaum, A.L., Westbrook, J.R.: A functional approach to external
graph algorithms. Algorithmica 32(3), 437–458 (2002)

2. Aggarwal, A., Vitter, J., et al.: The input/output complexity of sorting and related
problems. Commun. ACM 31(9), 1116–1127 (1988)

3. Arge, L., Brodal, G.S., Toma, L.: On external-memory MST, SSSP and multi-way
planar graph separation. J. Algorithms 53(2), 186–206 (2004)

4. Backstrom, L., Huttenlocher, D., Kleinberg, J., Lan, X.: Group formation in large
social networks: membership, growth, and evolution. In: 12th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining. pp. 44–54. ACM,
New York (2006)

5. Bertsekas, D.P., Tsitsiklis, J.N.: Parallel and Distributed Computation: Numerical
Methods. Prentice-Hall, Upper Saddle River (1989)

6. Boldi, P., Santini, M., Vigna, S.: A large time-aware web graph. ACM SIGIR Forum
42(2), 33–38 (2008)

7. Boruvka, O.: O jistem problemu minimalnim (about a certain minimal problem).
In: Prace, Moravske Prirodovedecke Spolecnosti. pp. 37–58 (1926)

8. Chiang, Y.J., Goodrich, M.T., Grove, E.F., Tamassia, R., Vengroff, D.E., Vitter,
J.S.: External-memory graph algorithms. In: 6th Annual ACM-SIAM Symposium
on Discrete Algorithms. pp. 139–149. SIAM, Philadelphia (1995)

9. Dementiev, R., Kettner, L., Sanders, P.: STXXL: Standard template library for
XXL data sets. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669,
pp. 640–651. Springer, Heidelberg (2005)

10. Dementiev, R., Sanders, P., Schultes, D., Sibeyn, J.: Engineering an external mem-
ory minimum spanning tree algorithm. In: Exploring New Frontiers of Theoretical
Informatics, pp. 195–208. Springer, Heidelberg (2004)

11. Gonzalez, J., Low, Y., Guestrin, C.: Residual splash for optimally parallelizing be-
lief propagation. In: International Conference on Artificial Intelligence and Statis-
tics. pp. 177–184. JMLR (2009)

12. Han, W.S., Lee, S., Park, K., Lee, J.H., Kim, M.S., Kim, J., Yu, H.: TurboGraph:
a fast parallel graph engine handling billion-scale graphs in a single PC. In: 19th
ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing. pp. 77–85. ACM, New York (2013)

13. Katriel, I., Meyer, U.: Elementary graph algorithms in external memory. In: Algo-
rithms for Memory Hierarchies, pp. 62–84. Springer, Heidelberg (2003)

14. Kumar, V., Schwabe, E.J.: Improved algorithms and data structures for solving
graph problems in external memory. In: 8th IEEE Symposium on Parallel and
Distributed Processing. pp. 169–176. IEEE Press, New York (1996)

15. Kwak, H., Lee, C., Park, H., Moon, S.: What is Twitter, a social network or a
news media? In: 19th International Conference on World Wide Web. pp. 591–600.
ACM, New York (2010)

16. Kyrola, A., Blelloch, G., Guestrin, C.: GraphChi: Large-scale graph computation
on just a PC. In: 10th USENIX Symposium on Operating Systems Design and
Implementation. vol. 8, pp. 31–46. USENIX (2012)

17. Lambert, O., Sibeyn, J.F., Stadtwald, I.: Parallel and external list ranking and
connected components. In: International Conference of Parallel and Distributed
Computing and Systems. pp. 454–460. IASTED (1999)

18. Leskovec, J., Lang, K.J., Dasgupta, A., Mahoney, M.W.: Community structure in
large networks: Natural cluster sizes and the absence of large well-defined clusters.
Internet Mathematics 6(1), 29–123 (2009)

New Techniques for External-Memory Graph Connectivity and MSF 15

19. Reif, J.H.: Synthesis of Parallel Algorithms. Morgan Kaufmann, San Francisco
(1993)

20. Roy, A., Mihailovic, I., Zwaenepoel, W.: X-Stream: edge-centric graph process-
ing using streaming partitions. In: 24th ACM Symposium on Operating Systems
Principles. pp. 472–488. ACM, New York (2013)

21. Sibeyn, J.: External connected components. In: Hagerup, T., Katajainen, J. (eds.)
SWAT 2004, LCNS, vol. 3111, pp. 468–479. Springer, Heidelberg (2004)

