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Abstract
We propose VFocus, a platform which uses streaming
graph analytics to narrow down the search space for trou-
bleshooting and management in large scale data centers.
This paper describes useful guidance operations which
are realized with graph analytics and validated with rep-
resentative use cases. The first case is based on real
data center traces to measure the performance of trou-
bleshooting operations supported by VFocus. In the sec-
ond use case, the utility of VFocus is demonstrated by
detecting data hotspots in a big data stream process-
ing application. Experimental results show that VFocus
guidance operations can troubleshoot Virtual Machine
(VM) migration failures with accuracy of 83% and with
delays of only hundreds of milliseconds when tracking
migrations on 256 servers hosing 1024 VMs. Such suc-
cesses are achieved with negligible runtime overheads
and low perturbation for applications, in comparison to
brute-force approaches.

1 Introduction

Troubleshooting large scale distributed sys-
tems/applications in data centers is important and
challenging. There can be millions of entities (e.g.,
cores) running a large variety of applications across
complex software stacks (e.g., hypervisors, guest VMs,
middleware). With such complexity, variety, and large
numbers, brute-force approaches logging all possible
performance-relevant events, at all levels of abstraction,
and for all entities, do not scale.

An emerging research area is to build systems that
combine online monitoring with online data analytics
– Monalytics [12]. As a representative solution, the
VScope system developed in our previous work offers
useful approaches to capture the ‘most relevant’ perfor-
mance data about performance issues observed in large-
scale data center applications [17]. Specifically, VS-

cope uses lightweight, continuous, and global monitor-
ing to detect performance anomalies, then ‘zooms in’
on those anomalies, by dynamically deploying more de-
tailed methods for data capture and online data anal-
ysis. Results obtained from representative data center
applications demonstrate clearly the advantages of VS-
cope, compared in performance and accuracy to logging
approaches capturing all performance-relevant events.
Lacking from VScope, however, were the techniques
needed to ‘guide’ the analyses being performed on cap-
tured monitoring information. VScope was not able to
capture important relationships among the entities being
monitored, nor did it provide structured ways to then an-
alyze those relationships. Such a ‘guidance’ framework
for monitoring data analysis is the key contribution of the
VFocus system presented in this paper, which offers the
following novel functionalities.
1. Interaction snapshot as a general representation for
interactions among the software/hardware entities that
present in data centers,
2. Streaming graph analytics as the online methods
used to evaluate the continually evolving interactions
represented in dynamically constructed snapshots.

With VFocus, data center administrators can create
diverse interaction tracking methods, and the resulting
‘guidance’ methods can efficiently troubleshoot perfor-
mance problems, by ‘zooming-in’ with both the data col-
lection being performed and the analyses applied to such
data. VFocus makes following novel contributions:
1. Graph-based analytics framework: a platform on
which interaction graphs are constructed via online mon-
itoring and analyzed using graph analytics, with the
choice of graphs and analytics depending on the inter-
actions that users wish to track.
2. Guidance operations using graph analytics: using
VFocus guidance operations including sort, group, and
explore, users can build various troubleshooting methods
to reduce the search space for troubleshooting.
3. Validation with data center traces and use cases:
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VFocus and its functionalities are evaluated with use
cases to identify VM migration failures and to diagnose
‘data hotspots’ in the HBase key value store. Experi-
mental results show that VFocus can troubleshoot VM
migration failures with an accuracy of 83%, and with low
overheads and interference with the applications.

2 VFocus Design and Implementation

2.1 System Overview

The VFocus system realizes the two-phase guidance
mechanism illustrated in Figure 1. In the snapshot con-
struction phase, VFocus collects metric data from mon-
itored entities and builds interaction snapshots, realtime
graphs in which vertices are software/hardware compo-
nents and edges are interactions among the components.
Interaction snapshots are updated continuously, to reflect
the latest activities in the system. The second phase is
snapshot analysis, for which VFocus exposes three prim-
itive operations: sort, group, and explore, explained in
more detail in Section 2.2. Data center operators use
those operations to track and analyze interactions in the
system, and to identify the entities to the performance
issue being observed.

Figure 1: Guidance Framework

VFocus leverages the DPG (Distributed Processing
Graphs) introduced in [17]. A DPG is an overlay net-
work consisting of processing nodes called VNodes that
each collects and analyzes monitoring data at realtime,
in a streaming manner. DPG topologies can vary, to
match monitoring needs (e.g., scale [18], and they can
be deployed at runtime and on-demand, as described in
more detail in [17]). On this basis, the system archi-
tecture of VFocus depicted in Figure 2 enables users to
interact with it via two interfaces, an analysis console
and an archive console, both of which are integrated in
the VMaster, a controller process for DPG manipula-
tions. The analysis console takes users’ input as opera-
tion commands to analyze interaction snapshots and pro-
vides users with guidance results. The archive console is
used to manage snapshots persisted in the VFocus back-
end store. In some troubleshooting scenarios, e.g., when

analyzing snapshots spanning a time duration too long
to fit all snapshots in memory, the realtime analysis may
query the archiving system for history data.

Figure 2: VFocus Architecture

The system operates as follows. The VMaster starts
the guidance process by deploying a hierarchical DPG
on the monitored machines1. Raw monitoring data col-
lected periodically by the DPG’s leaves are processed to
extract vertices and edges for forwarding to parent nodes.
Parents aggregate vertices and edges into edge lists that
represent partial snapshots of the machines monitored by
those parents’ leaves. Partial snapshots are passed up the
tree to the root for aggregation into a global snapshot.

2.2 Guidance Operations

The primitive graph analysis functions provided by VFo-
cus are listed in Table 1. There are functions to calcu-
late the basic properties of a graph, such as the degree of
some specific vertex or the number of vertices and edges
in the snapshot. For instance, the degree of a vertex is
used in Section 3.1 to find the candidate servers that are
most likely to have VM migration failures. There are also
functions for tracking the relationships among vertices,
e.g., Search Neighbor and Clique Analysis. Section 3.2
outlines a use case in which neighbor analysis is used to
determine the HBase region server with a data hotspot.
As stated earlier, all such analysis functions are executed
on VNodes at runtime, at the same time as monitoring
metrics are being collected. This results in repeated in-
cremental snapshots suitable for rapid analysis and sub-
sequent problem troubleshooting. Finally, some analyt-
ics are run concurrently and in a distributed manner. For
example, an aggregation tree is used to implement the

1The DPG runtime is installed on those machines.
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Table 1: Functions.CC(Connected Components),
C(Centralized), H(Hierarchical)

Graph Function Description Mode
Search Vertex/Edge Search vertex/edge C
Search Neighbor (In)direct neighbors C
Count Vertex Get number of vertices H
Count Edge Get number of edges H
Get Degree Get degree of a vertex H
Get Attribute Get vertex/edge attr. C
Clustering/Clique/CC Grouping vertices C

Table 2: Operations.CC(Connected Components)
Operation Basic Option Supporting Fun.

Sort
Vertices by degree Get Degree

Edges/Vertices by attr. Get Vertex/Edge

Explore
(In)direct neighbors Search Neighbors

Vertices/Edges by attr. Search Vertex/Edge

Group
Vertices by attr. Clustering

Vertices by connection Clique/CC

Count Degree function. Others operate in a centralized
manner, e.g. the Search Neighbor function.

Analysis results are used by guidance operations to
narrow down the search space of vertices and edges. To-
ward this end, VFocus provides three primitive guidance
operations listed in Table 2: sort, group, and explore.
They are implemented with different snapshot analysis
functions listed in Table 1. Data center operators access
and execute the operations in analysis console as com-
mand lines.

The Sort operation, supported by the Get Degree and
Get Vertex/Edge functions, orders vertices or edges by
their attributes (or by other aggregated properties like
‘degree’) and returns the top entities in the sorted list.

The Explore operation, supported by the Search Ver-
tex/Edge and the Search Neighbors functions, can search
the neighbors of some specified vertex at different dis-
tances (measured by the number of hops) or it can search
the vertices/edges with some specified attribute. An ex-
ample of its use appears in Section 3.2, where the explore
operation is used to track the data connectivities between
the HBase region servers and the HBase clients, in order
to troubleshoot the data hotspot issue.

The Group operation places closely related vertices
into a shared group, returning the group as the entity
subsequently manipulated. ‘Grouping’ style analysis has
also been used in previous troubleshooting research [10],
e.g., where VMs are clustered by their similarity in terms
of their computation behavior. One such similarity is
a group of VMs are interacting frequently, a fact that
can give rise to optimizations in which the migration of
one such VM triggers the migrations of others, to avoid

unnecessarily high levels of machine cross-talk in the
data center. Finally, the Group operation has two op-
tions: grouping by attributes using clustering algorithm,
or grouping by the connections between vertices, using
clique analysis and connected components, etc..

3 Use Cases

3.1 VM Migration Analysis
In virtualized data centers, VM migration moves a VM
running on a source host to a different destination host.
Performed for consolidation and resource management
purposes, migration is a ‘heavyweight’ management op-
eration both in terms of its effect on the VM itself, the
network and machine resources consumed. Migration
failures, therefore, have substantial performance impli-
cations. A cause for migration failure is the inappro-
priate choice of destination machines, one reason being
an overloaded host with insufficient capacity to rapidly
complete the migration. Migration methods, therefore,
will not select targets with high internal workloads, as
indicated by their CPU or memory utilization. A remain-
ing issue, however, is the external workload surround-
ing target hosts, an example being insufficient current
network capacity to move the VM’s substantial internal
states quickly to the target machine.

VFocus can assist in VM migration management (1)
via online tracking of host interactions, scaling to hun-
dreds of server systems, and then (2) by using guidance
operations to identify overloaded hosts not only based
on their internal workloads but also based on their inter-
actions with other hosts. We demonstrate the utility of
VFocus for identifying overloaded hosts by ‘replaying’ a
VM management operation trace recorded from a virtu-
alized data center. The trace is collected from 256 servers
in the Techway virtualized data center at Georgia Tech,
a ‘green computing’ facility run jointly by the CERCS
and CEETHERM research centers. The servers host a
total of 1024 VMs running enterprise workloads, includ-
ing (1) Nutch: a data analytics benchmark, (2) Volde-
mort: a key-value store [16] with YCSB [9] as load gen-
erator, (3) Cloudstone: a cloud web-serving benchmark,
(4) Linpack: a high performance computing workload.
The VM migration traces are collected from October 05,
2012 8:23:15 AM to October 12, 2012 12:04:20 PM.
These 172 hours of data document 31790 successful and
2845 failed migrations.

VFocus is used as follows. A centralized DPG with
one master VNode and 8 slave VNodes is driven by at-
taching to each slave log record generators. Each genera-
tor runs 1/8th of the log describing successful migrations,
injecting log records into the slave VNodes. These leaf
VNodes, then, periodically process log records to gener-
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ate local snapshots and perform local snapshot analysis,
the results of which are then sent to the master VNode to
create global snapshots for guidance operations. We use
an adjustable sliding window storing 1000 migrations in
these experimental evaluations, in order to make statis-
tically sound predictions, and slide the window after ev-
ery new migration. In each snapshot, the vertices are the
hosts, and the edges are migrations from source to des-
tination host. There are approximately 256 vertices and
1000 edges in every snapshot, and there can be multiple
edges between two vertices due to multiple migrations
between two hosts in the same time period.

The troubleshooting process has following steps. In
the first step, we use group operation to divide the global
interaction snapshot, which consist of partial snapshots,
into sub-graphs in each of which there is at least one path
between two vertices. The hypothesis behind using this
operation is that the load of a host does not come from
the other host which it does not interact with.

When there is a new migration observed on a host,
VFocus first checks which group this host belongs to, and
then uses the sort operation on degrees of all the vertices
(hosts) in that group and ranks the hosts in a descend-
ing order. The reason behind this operation is that the
top hosts on the list are having/or had most migrations,
and hence are more likely to have resource scarcity issue
when new migration requests take place. In the trace, any
two migrations happen at different time, therefore there
is only one group chosen when the sort operation is ex-
ecuted. The sort operation will provide the top n hosts
as candidates which may potentially have VM migration
failures in the future. n is tunable and in our experiment,
we find that n=45 gives us a good performance.

After replaying the trace in VFocus, it produces a se-
ries of candidate lists. To validate the guidance method-
ology, we match the list to the respective error log record
at each failure point. If the actual host with migration
failure is in the list, then we consider VFocus as a ‘hit’
as the predicted list contains the actual failure node, oth-
erwise we consider it as a ‘miss’. In this paper we only
study the failures due to overloaded hosts which are in-
dicated as ‘operation timed out’ in the failure log.

Table 3 shows the performance of VFocus guidance.
We can see in the table that, the overloaded host er-
rors have a significant percentage of all the errors (over
50%). As a guidance approach, VFocus reduces the
search space from 256 servers to 45 servers, with an
overall hit rate of over 83%. We further study the ‘po-
sition’ of a hit which is essentially the actual number of
candidates needed to be checked before reaching the real
failure node. The distribution of hit position is shown in
Figure 3. About 70% of hits happen within 30 hosts and
nearly 40% is within 15 hosts, which means for the ma-
jority of time, size of search space can be further reduced

Table 3: VFocus Guidance Accuracy
# Overload Errors # Overload Found Hit Rate

1441 (51% of all errors) 1195 83%

from 45 to 30.
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Figure 3: Distribution of Hit Positions

3.2 On-line Data Hotspot Analysis
HBase, a distributed key-value store system, is widely
used as an infrastructure to support big data applica-
tions. HBase consists of multiple region servers which
serve the read/write requests (mostly through memory
cache) concurrently to reduce the latency and increase
the throughput. One of the annoying performance issues
in this platform is that some region servers in HBase
become data hotspots which receive significantly more
read/write requests than other region servers. As a ma-
jority portion of requests go to the hotspot region servers,
their cache in main memory is filled up quickly. Those
region servers then become the bottleneck and bring
down the overall read/write performance of the HBase.
One of the common reasons for the hotspot issue is
the imbalanced accessing pattern on the row key space.
Which region server each read/write request goes to is
decided by the row key value in the request, and in HBase
the total row key space is evenly divided, as equal regions
managed by region servers. Therefore, if the row keys in
the requests, either from one application or from multi-
ple applications, concentrate on some of the key regions,
the according region servers become hotspots.

VFocus addresses this challenge in two aspects. First
the interaction snapshots can track the runtime commu-
nications among HBase region servers online. Secondly,
the hotspots can then be easily spotted by using guidance
operations.

We validate VFocus’ effectiveness in our virtualized
data center supported by OpenStack. We started over 100
VMs on 30 physical servers running Xen hypervisor. We
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(a) Normal Interactions (b) Interactions with Hotspots

Figure 4: Interaction Snapshots in Hotspot Analysis

deployed two applications (1) GTStream [2], a big data
streaming processing platform using FlumeNG [1], (2)
traditional read/write clients using YCSB [9], a widely
used cloud benchmark. The two applications share the
same HBase infrastructure though they access different
tables in the HBase. In GTStream application, each
Flume Agent writes at a rate of 100 requests per sec-
ond to HBase accessing a table named ‘test’. We use a
mix of 50/50 reads and writes workload in YCSB clients
and each client send 100 requests per second to HBase
accessing a table named ‘usertable’. Both tables’ key re-
gions are divided evenly across all the region servers. We
deploy VFocus on all the VMs and create a hierarchical
DPG with 10 parent VNodes on 10 dedicated VMs. We
use Libpcap [3] to sniff the network traffic on every VM.

We showcase VFocus’ guidance functionalities in two
scenarios. The first scenario represents a normal work-
load of HBase where there is no hotspot. In this scenario,
both the YCSB clients and Flume agents assign row key
value in a balanced way. For every request, YCSB cre-
ates a key value as a combination of a string and a hash
value randomly selected from the key value space. In
Flume, a key value is assigned as a combination of an ar-
bitrary web url which the flume agent is processing and
a timestamp. Figure 4(a) illustrates one of the snapshots
constructed by VFocus online. Yellow dots are all the
region servers. Green dots represent zookeeper servers.
Blue dots represent HBase clients including Flume agent
and YCSB clients. The edges among vertices are the
network communications and the thickness of an edge
indicates the traffic intensity between the two VMs. The
snapshot tracks the network interactions among zookeep-
ers, HBase clients (YCSB clients and Flume agents), and
region servers. By using explore operation on vertices
representing region servers to find its neighbors, we can
easily find that all the region servers are being accessed
by all the YCSB clients and Flume agents with approxi-
mately equal traffic between any two edges.

In the second scenario, both the YCSB clients and
Flume agents assign row key value as a combination of
a fixed string and current timestamp, which monoton-

ically increases instead of randomly distributed in the
key space. Therefore, the key values will condense in
a limited range and the requests from both YCSB and
Flume will go to a subset of region servers, making them
hotspots. Figure 4(b) illustrates one of the snapshots
constructed in this hotspot scenario, where red dots are
hotspot region servers. Besides tracking the interactions
among VMs according to their roles in the applications,
running explore operation on all the region servers fig-
ures that only three region servers are communicating
with HBase clients, indicating the three hotspots.

4 Performance Evaluation

4.1 VFocus Overhead
To test the overhead of VFocus on a VM, we run the net-
work interaction tracking used in Section 3.2 on VFocus
and change the durations of sniffing. We measure the
VM’s CPU and Memory utilization increase as the over-
heads.The overhead for VFocus is within 2% in CPU uti-
lization while the memory consumption is no more than
0.2%. The CPU utilizations increase slightly as the du-
ration increases as the network sniffing consumes more
CPU cycles as it continuously runs for a longer time.

The interferences of VFocus and brute-force approach
to the application are shown in Figure 5(a). It shows that
as the monitoring duration increases, VFocus’ interfer-
ence to the application increases, while the interferences
are within 30% when the duration increases from 50 sec-
onds to 200 seconds. By contrast, the always-on brute-
force approach has a considerably higher interference at
around 58%. To further study the breakdown of the over-
heads, we turned off the Libpcap-based data collection
function on all the Flume agents, and instead stored net-
work connection metrics, which are pre-recorded in file
using Libpcap, in memory. VFocus reads the memory
and processes data in the same way as we did when us-
ing Libpcap. The black bar in Figure 5(a) indicates that
the VFocus itself does not play the major role in the to-
tal overheads because it only incurs 7.06% slowdown,
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Figure 5: VFocus Performance Results

compared to over 20% slowdown when Libpcap-based
monitoring is enabled.

4.2 Snapshot Construction Performance

We test the snapshot construction performance by gen-
erating VM migration snapshots in VM migration use
case with different sliding window sizes, and compare
two construction strategies, centralized and parallel. In
the centralized strategy, we send all the migration data
to a central node and generate a global snapshot; while
in the parallel strategy, we create a snapshot in a dis-
tributed way by which 8 VNodes create partial snapshots
which are aggregated at the root VNode. Each snapshot
has up to 256 vertices and 1000 edges. As shown in Fig-
ure 5(b), parallel construction outperforms centralized
strategy and as the size of sliding window increases the
construction time increases as well. However the max-
imum construction time is within 700 milliseconds, and
the parallel construction strategy increases much slower
than the centralized strategy does. Validated by real data
center monitoring traces, the results show than the snap-
shot construction in VFocus is fast, hence VFocus is
capable of tracking online, runtime interactions respon-
sively. Parallel construction strategy used by VFocus is
more scalable and faster than the centralized strategy.

4.3 Graph Analysis Performance

We evaluate the VFocus’ performance on snapshot anal-
ysis by measuring the computation time of analysis
listed in Table 1. Clique analysis has two functions
(1) Clique Number function that counts the number of
cliques in the snapshot and (2) Max Clique function that
yields the largest clique in the snapshot. The monitoring
data is the trace used in Section 3.1. We measure com-
putation time at different sliding window sizes.

As shown in Figure 5(c), the computation time is
within 10000 microseconds when the sliding window
size changes from 100 to 1000, which means for VM
migration use case, the graph analysis can be conducted

in a timely manner. As the sliding window enlarges, the
time just increases slightly because all the computation
are processed in memory, which make it suitable for real-
time graph analysis. Among different analysis functions,
the two clique analyses have longer computation time
because they have higher computation complexities than
degree analysis and neighbor analysis.

5 Related Work

VFocus is similar to previous research on dependency
inference.[8, 5, 4] use network traffic and signal pro-
cessing methods to infer dependencies. [7] leverages
application-level knowledge along with network traffic
information, to infer dependencies. The fundamental
difference between VFocus and dependency inference is
that the latter does not provide a general framework for
graph abstraction and analysis on dependencies. In re-
quest path diagnosis research, [13, 6] highlight perfor-
mance differences between application activities by com-
paring their request execution paths. VFocus is differ-
ent because it focuses on creating continuous snapshots
of the interactions on-line while request path diagnosis
are off-line approaches. VScope [17] is a flexible mid-
dleware which can dynamically deploy monitoring and
analysis functions on any monitored entities at any time.
VFocus leverages VScope’s flexible architecture but it is
a graph analysis system aiming to track and analyze the
interactions among entities in data centers on-line at real-
time. VScope has built-in guidance mechanism using ad-
hoc approaches, which lacks extensibility and generality
while VFocus provides a guidance framework and primi-
tive guidance operations by which different troubleshoot-
ing approaches can be implemented.
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