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Abstract—Virtualization allows the platform to have increased
number of logical processors by multiplexing the underlying
resources across different virtual machines. The hardware re-
sources get time shared not only between different virtual ma-
chines, but also between different workloads of the same virtual
machine. An important source of performance degradation in
such a scenario comes from the cache warmup penalties a
workload experiences when it gets scheduled, as the working set
belonging to the workload gets displaced by other concurrently
running workloads. We show that a virtual machine that time
switches between four workloads can cause some of the workloads
a slowdown of as much as 54%. However, such performance
degradation depends on the workload behavior, with some
workloads experiencing negligible degradation and some severe
degradation.

We propose Elastic Time Slicing (ETS) to reduce the context
switch overhead for the most affected workloads. We demonstrate
that by taking the workload-specific context switch overhead
into consideration, the CPU scheduler can make better decisions
to minimize the context switch penalty for the most affected
workloads, thereby resulting in substantial performance im-
provements. ETS enhances performance without compromising
on response time, thereby achieving dual benefits. To facilitate
ETS, we develop a low-overhead hardware-based mechanism
that dynamically estimates the sensitivity of a given workload to
context switching. We evaluate the accuracy of the mechanism
under various cache management policies and show that it is
very reliable. Context switch related warmup penalties increase
as optimizations are applied to address traditional cache misses.
For the first time, we assess the impact of advanced replacement
policies and establish that it is significant.

I. INTRODUCTION

Virtualization allows sharing of hardware resources by mul-
tiple guest operating system (OS) instances. The resources
are shared not only between different virtual machines, but
also between different workloads of the same virtual machine
(VM). In order to facilitate high utilization through consoli-
dation, the system must support a large number of workloads.
While some systems adopt coarse grained division at the level
of single cores, others employ fine grained division through
time sharing a core between workloads [1]. The latter phe-
nomenon is referred to as multi-tasked virtualization. Factors
such as cost, security, and system management convenience
lead to more workloads per system. The transition from
dedicated workstations to virtualized desktop infrastructure
environments is another trend in this direction.

In a virtualized environment with multiple workloads per
VM, the time slice allocated to a VM is split equally among the
constituent workloads [1]. As a result, each workload obtains

a share of the time slice allotted to the VM, which is inversely
proportional to the number of workloads. Such an aggressively
multi-tasked environment serves as the basis for our work.
Multi-tasked virtualization affects performance in two ways:
(1) direct overhead incurred to switch among the workloads
and (2) indirect overhead incurred due to the displacement of
the system state. The second factor contributes significantly
to the performance degradation and can be further viewed
as composed of multiple components: lost register, translation
look-aside buffer, branch predictor, and cache states. Among
these components, the major overhead is due to the displaced
state in the last level cache (LLC) [1] and is the focus of this
work. We designate the additional cache misses suffered due
to a context switch (CS) event as CS misses. The performance
penalty associated with CS misses is severe in case of multi-
tasked virtualization due to an additional degree of multi-
tasking above and beyond the OS-level multi-tasking.

Modern computer systems feature large LLC and long
latency main memory. When run on such systems, memory
intensive tasks cache a large volume of data in the LLC. We
use the terms workload, task and application as synonyms.
After running a task-of-interest for the duration of its time slice
value, when the CPU scheduler context switches to a different
task or a set of different tasks, the cache lines belonging to
the former are replaced by those of the latter. Depending on
the memory access behavior of the intervening tasks, when
the task-of-interest gets a schedule on the processor again, it
is likely to encounter a partially or completely cold cache. De-
pending on the memory reuse behavior of the task-of-interest,
its performance could be affected across the spectrum ranging
from no or slight degradation to significant degradation. Some
tasks experience only slight degradation because sometimes
caches hold data irrelevant to future accesses [2].

We illustrate the variation in CS penalty across applications
using an example. Figure 1 shows the impact of CS events on
the performance of two different applications. On a CS event,
the cache warmup penalty is minimal for application (a) and
significant for application (b). While (a) is not sensitive to
CS events, (b) is highly sensitive. Even though the complete
cache state is lost in case of both applications (a) and (b) on
a CS event, (a) only suffers minor performance degradation
because its data reuse is low. (b) suffers significant perfor-
mance degradation as its data reuse is high. In the following
section, we show that different tasks suffer from CS misses
differently using actual data. For a task which suffers from CS
misses significantly, a small time slice value causes the task



to experience CS events and CS misses more number of times
than a large time slice value. This phenomenon translates to an
increase in the execution time of the task and a corresponding
increase in the energy consumed across the entire system. The
problem can be addressed by allocating fewer but longer time
slices to the most affected tasks (illustrated in Figure 1(c)).
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Fig. 1. (a) When context switch penalties are small, using short time slices
does not cause any noticeable overhead (b) For some workloads, short time
slices can cause significant slowdown (c) Only for such workloads, using
longer and infrequent time slices is desirable

In this paper, we propose elastic time slicing (ETS) to
reduce the CS miss penalty. While a uniform time slicing
(UTS) CPU scheduling algorithm allocates time slices of equal
duration to all tasks irrespective of their specific CS miss
behavior, an ETS CPU scheduling algorithm analyzes the CS
miss behavior of the tasks and allocates fewer but longer
time slices to those tasks that suffer significant performance
degradation due to CS events. Performance penalty due to CS
events can be naı̈vely addressed by allocating 10 ms time slices
to all tasks. 10 ms is the default time slice value allocated by
the Linux OS. However, this solution suffers from high latency
or response time between consecutive schedules as depicted
in Figure 2. In contrast, UTS algorithm with 2.5 ms time
slices achieves low latency between consecutive schedules but
it suffers from low performance. 2.5 ms is obtained by dividing
10 ms equally among 4 tasks of a VM. Our ETS algorithm
combines the best of both worlds and offers high performance
(within 4% of UTS-10) as well as low latency (similar to
UTS-2.5).

Enabling ETS requires dynamically estimating the extent
to which a task suffers from CS misses. We develop a low-
cost hardware-based Monte Carlo mechanism to estimate the
cost of a CS event in terms of the number of CS misses
suffered. The CS cost estimator works reliably under various
cache management policies because it is based on sampling
of actual CS miss information. It facilitates incorporating the
information about CS miss behavior into the design of a CPU
scheduling algorithm and exploiting the potential of such an
enhanced CPU scheduler.

Most solutions that attempt to improve the cache hit rate
by addressing the traditional cache misses (such as due to
capacity, conflict, coherence, and replacement) accentuate the

problem of CS misses. These include – increasing the capacity
of cache, employing compression in cache, prefetching lines
into cache, improving the replacement algorithm etc. The
number of CS misses tends to increase with increase in cache
capacity (§ VI-B) and improvement in replacement algorithm
(§ VI-A), thus worsening the problem. This paper shows
that as systems optimize cache organization, addressing the
problem associated with CS misses becomes more important,
and a scheme like ETS becomes even relevant.
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Fig. 2. Elastic time slicing (ETS) provides the performance benefits of
uniform time slicing (UTS) with 10 ms time slices as well as the latency
benefits of UTS with 2.5 ms time slices

II. MOTIVATION

The locality properties of applications vary, and hence
losing the cache state due to context switch can lead to
variation in performance degradation for different applications.
To demonstrate this, we conducted an experiment by reducing
the allocated time slice value. Figure 3 shows the variation
in slowdown (measured in terms of CPI) for SPEC CPU2006
benchmarks as the assigned time slice value is reduced from
10 ms. We flush the caches after each time slice in order to
emulate a CS event. The rationale behind flushing the caches
on a CS event will be described shortly. The parameters of the
simulation infrastructure used to generate the results provided
in Figure 3 and the basis for the choice of the parameters
are provided in § IV. Here, we capture the important aspects
in order to enable comprehension of Figure 3. The results
correspond to a LLC capacity of 2 MB. We consider a pro-
cessor running at a frequency of 4 GHz. On such a processor,
10 million elapsed cycles correspond to an execution time of
2.5 ms. The Y-axis represents the CPI corresponding to the
execution of 500 million instructions. The labels 2.5 ms and
5 ms correspond to the cases when the VM is comprised of 4
and 2 workloads respectively, and a time slice value of 10 ms
allocated to the VM is divided equally among the workloads.
The CPI values for labels 2.5 ms and 5 ms are normalized
with respect to the values corresponding to 10 ms. A large
value on Y-axis corresponds to a higher CPI and therefore,
the smaller the Y-axis value the better.

We show the behavior for all 29 SPEC CPU2006 bench-
marks in Figure 3 to make our case. The benchmarks are sorted
in the ascending order of the performance degradation incurred
as the allocated time slice value is reduced. Throughout this
paper, we identify the benchmarks in figures using the first



four letters of their names. For applications that appear on the
left of the figure, the CPI varies very little as the duration
of the time slice value is reduced from 10 ms to 2.5 ms.
However, the CPI varies significantly in case of applications
that appear on the right. For the remaining applications, the
variation in the CPI as the time slice value is decreased is
distributed across the spectrum. The maximum degradation for
2.5 ms time slice is observed in case of hmmer and is 54%. An
analysis of the results reveals that different applications indeed
suffer from CS events differently - some suffer mildly while
others suffer severely. Further, the CS performance penalty
varies over the duration of execution of an application (§ V-A).
The variation in performance degradation can be addressed by
adopting elastic time slicing (ETS). The key insight behind
ETS is to allocate fewer but longer time slices to address the
performance penalty incurred by the most affected workloads.
In order to facilitate ETS, a dynamic mechanism is essential
to estimate the extent to which an application suffers from CS
events. We now describe an assumption and justify the reason
for making it before presenting the dynamic mechanism.
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Fig. 3. Variation in slowdown (measured in terms of CPI) as the time slice
value is reduced for SPEC CPU2006 benchmarks

We assume that the data cached by an application in the
LLC during the duration of its time slice is completely evicted,
by the data brought in by the intervening applications, before
it is scheduled again. This assumption holds because of the
aggressive multi-tasking employed by the virtualized systems
described in § I. We co-scheduled 8 applications in a round-
robin (RR) fashion, each for a time slice duration of 2.5 ms.
This co-schedule is analogous to a scenario where there are 2
virtual machines each containing 4 workloads. The baseline
time slice value of 2.5 ms is obtained by dividing 10 ms
equally among the workloads comprising a VM. The values
we considered for the number of VMs and the number of
workloads in this work are conservative. The actual numbers
are even larger [1, 3] and our assumption is still valid under
such conditions. We evaluated 30 different co-schedules, each
made up of 8 distinct applications, and observed the number
of residual lines from one schedule of the application to
its next schedule. Residual lines are those lines that remain
in the cache from one schedule to the next. Over the total
duration of execution, the number of residual lines for all
applications is zero. Similar behavior was also observed in
previous works [1, 3]. Even though the base time slice value
is small, when the execution of interleaved applications is
considered, the total time is sufficient for an application’s data

in the LLC to be evicted completely. This phenomenon has
two implications. First, invalidating the cache entries faithfully
emulates a CS event. Second, there is not any negative impact
due to extending the time slice value of an application on those
applications whose time slice value remains unchanged.

III. FRAMEWORK FOR ESTIMATING AND ADDRESSING
THE CS PERFORMANCE PENALTY

The motivational results presented in § II suggest that a
dynamic mechanism is essential for estimating the penalty
incurred due to a CS event. Such a mechanism can be used
to characterize the impact of a CS event on an application.
Now, we describe the mechanism designed to estimate the
cost of a CS event in terms of the number of CS misses
incurred. The mechanism is capable of computing the cost
of a CS event effectively while incurring a minimal overhead.
Further, we present an augmentation to the baseline UTS RR
CPU scheduling algorithm in order to derive an ETS RR
CPU scheduling algorithm. The latter is capable of leveraging
the calculated cost of CS events to mitigate the performance
degradation.

A. Cost Estimation of a CS Event

The number of CS misses suffered by an application can
be estimated in a simple but inefficient manner by making
a copy of the tag directory (of the cache) on a CS event.
When the application obtains a schedule again, the accesses
that miss in the main tag directory but hit in the copy tag di-
rectory are tracked. The number of such accesses corresponds
to the number of CS misses suffered. This simple scheme
suffers from the following drawbacks. If there are multiple
co-scheduled applications, we need a corresponding number of
copy tag directories which incur a significant area overhead.
Multiple copy tag directories can be avoided by storing all
but the one required (at any given time) in the memory. This
approach requires maintaining space in the memory and logic
to store and restore the copy tag directory to and from the
memory respectively. Further, additional memory bandwidth is
required to perform the store and the restore operations. Now,
we propose a solution that overcomes these disadvantages. The
solution is based on the following key ideas. CS miss count
can be estimated by emulating a CS event. This requires only
one copy tag directory (Figure 4a). The hardware overhead
due to the copy tag directory can be reduced by maintaining
copy tags only for a fraction of the sets in the cache (Figure
4b). Further, the copy tag directory entry needs to contain only
one bit of information (a valid bit) as opposed to a main tag
directory entry which contains a valid bit, address bits, and
other meta data (Figure 4c).

The working of our cost estimation framework is modeled
after that of a Monte Carlo (MC) method. MC methods rely
on random sampling to determine an approximate answer to
a question. In general, the answer determined using a MC
method becomes more accurate as the number of samples
considered increases. The proposed mechanism consists of
an auxiliary tag directory (ATD) in addition to the regular



main tag directory (MTD) in the cache. The ATD contains
tags corresponding to a certain number of sets in the MTD.
These sets in the MTD are referred to as sample sets (SS).
We reason about the exact number of SS required in § V. An
entry in the ATD contains only one bit of information and can
be either valid or invalid. It should be noted that a hit in the
ATD is analogous to the line being valid and a miss to the
line being invalid. At the start of execution, the state of SS in
the MTD and the ATD is consistent, which means that lines
in the MTD and the ATD are either both valid or both invalid.
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Fig. 4. (a) The MTD (wide) and the full ATD (narrow) (b) The MTD (wide)
and the ATD (narrow) with sample sets (c) An entry in the MTD (wide) and
the ATD (narrow) (d) Status of accesses in the MTD and the ATD after a
context switch event

In order to estimate the number of CS misses for an ap-
plication, the entries in the ATD are invalidated. This process
emulates a CS event. After the point of invalidation, corre-
sponding to subsequent cache accesses, one of the following
scenarios can arise (Figure 4d): access hits in both the MTD
and the ATD, access misses in both the MTD and the ATD, or
access hits in the MTD but misses in the ATD. The first two
events are not of interest to us. The third event corresponds to
a CS miss. A miss in the ATD and a hit in the MTD happens
because the ATD experienced a cache flush event, which is
analogous to a CS event. The corresponding entry in the ATD
is made valid on recording the CS miss. So, further accesses to
the same cache line do not generate CS misses. The ATD entry
corresponding to the second event is made valid as well. We
use a counter (CS-MISS-CNT) to keep track of the CS misses.
The counter value is read at the time when the application
is being switched out. It indicates the number of CS misses
suffered by SS. In order to estimate the total number of CS
misses experienced by the application, the counter value is
multiplied with the ratio of the total number of sets to the
number of SS. This ratio is chosen to be a power of 2 so that
the multiplication operation degenerates to a simple left shift
operation. After the invalidation point, an event corresponding
to a miss in the MTD and a hit in the ATD does not happen by
construction (Figure 4d). The set of hits in the ATD is always
a proper subset of the set of hits in the MTD. We depict the
steps for estimating the CS miss count in Algorithm 1 using
pseudo-code.

The mechanism proposed above aids in estimating the
number of CS misses for a private cache. The trend in modern
computer systems is to employ simultaneous multiple thread-

ing (SMT) and/or multiple cores to enhance performance while
keeping the power consumption under check. We refer to the
hardware thread instances in case of SMT and the cores in a
multi-core processor commonly as sharers. When the cache
is shared by two or more sharers, the CS cost estimation
mechanism needs to be augmented as follows to support the
cost estimation for each sharer. The modification required is to
replicate CS-MISS-CNT counter per sharer. As lines belonging
to each sharer are uniquely identified in the tag entry of the
cache, the identifier can be used to match and update the
corresponding counter. Note that one copy of the ATD is
sufficient irrespective of the number of sharers.

Algorithm 1 Context switch cost computation in terms of the
number of CS misses

initialize() {
invalidate entries in ATD;
CS-MISS-CNT = 0; }

count_cs_misses() {
if ((MTD.lookup == hit) &&

(ATD.lookup == miss))
CS-MISS-CNT++; }

estimate_cs_penalty() {
CS-MISS-CNT X (number-of-sets-in-cache/

number-of-sample-sets); }

B. Design of an ETS RR CPU Scheduling Algorithm

Previously, we pointed out that fewer but longer time slices
must be used for those applications that are severely impacted
by CS events. By doing so, we can alleviate the negative
impact of CS events on the performance of such applications.
In this section, we describe the design of a CPU scheduling
algorithm that achieves this goal. Specifically, we augment
the baseline UTS RR CPU scheduling algorithm in order to
derive an ETS RR CPU scheduling algorithm. Recall that we
described the distinction between the two in § I. In order to
keep the discussion precise, we choose the following values
for parameters (same as the values used throughout this paper).
The baseline UTS algorithm allocates a time slice value of 2.5
ms for all applications in a round-robin fashion. We consider a
system with a LLC capacity of 2 MB. The cache consists of a
total of 32,768 lines, each of size 64 bytes. The ETS algorithm
categorizes these lines into 4 groups as shown in the ‘Group’
column of Table I. The groups are based on the number of
CS misses. For an application belonging to a particular group,
the algorithm extends the time slice to the value indicated in
the ‘Slice’ column. The size of the group is doubled from one
group to the next, and the time slice value is increased by 2.5
ms. In this manifestation, we capped the maximum time slice
value at 10 ms. In an actual system, we expect that this value
will be set after taking the response time constraints and other
factors into consideration.

We measure the number of CS misses experienced by the
application every time it obtains a schedule on the processor.



TABLE I
AN ETS ROUND-ROBIN CPU SCHEDULING ALGORITHM

IMPLEMENTATION. CS MISS COUNT IS USED AS INDEX IN ORDER TO
DETERMINE THE TIME SLICE VALUE FOR THE NEXT SCHEDULE

Group Slice Group Slice
(1) ≤1,500 2.5 ms (2) 1,501 - 4,500 5.0 ms
(4) >10,501 10 ms (3) 4,501 - 10,500 7.5 ms

The number of misses estimated using Algorithm 1 is used
as index into Table I. The corresponding value of ‘Slice’
is assigned as the time slice value for the next schedule
of the application. It must be noted that the discretization
presented in Table I is realized in software and therefore can
be customized to a target system. We developed the presented
discretization by heuristically running the benchmarks and
analyzing the results. A high level overview of the working of
the ETS framework is provided as a flow chart in Figure 5.

Application obtains 
CPU schedule

CS cost estimation algorithm is 
triggered halfway into the time slice

Estimation results are collected at the 
end of the time slice

ETS algorithm is consulted to determine 
the time slice value for the next schedule

An application obtains 
CPU schedule

New time slice value is 
recorded and schedule ends

Fig. 5. A high level overview of the ETS framework

It is not our objective to propose an alternative CPU
scheduling algorithm. There is a large body of work that
investigated such algorithms. However, we argue that these
algorithms must be supplemented to make them aware of the
cost of the CS events. The design of the scheduling algorithm
could incorporate CS miss information together with other
currently used factors such as priority, interactivity etc. Here,
we described how a UTS RR CPU scheduling algorithm can
be augmented in order to account for the CS penalty incurred.

IV. EXPERIMENTAL METHODOLOGY

We use an in-house trace-driven simulator to conduct the
experiments. The processor is modeled as an in-order core
and the simulator is capable of handling multiple cores. The
memory hierarchy consists of three levels of caches: separate
Instruction and Data caches at the first level, and unified caches
at the middle and the last levels. A uniform value of 64 bytes is
used for line size across the entire hierarchy. We use a baseline
value of 2 MB for the LLC capacity in our experiments.
Our simulator can model the LLC as private to each core

or as shared between multiple cores. In either case, multiple
applications can be co-scheduled on each core. All cache levels
implement the LRU replacement policy. The parameters of the
simulated machine are shown in Table II.

In the event of a context switch, the employed framework
eliminates effects other than the loss of saved state in the
LLC. We use all benchmarks (29 in number) from the SPEC
CPU2006 suite in order to obtain a comprehensive set of
results. Each benchmark is comprised of a representative set
of 500 million instructions. For our experiments, we combined
disparate benchmarks in order to generate 29 diverse workload
mixes (co-schedules). When an LLC capacity other than 2 MB
is used, we keep the associativity constant and increase the
number of sets. We apply the CS cost estimation mechanism
to the LLC in the system as the distance between the LLC and
the main memory is far in units of CPU cycles. Our baseline
system employs the UTS RR CPU scheduling algorithm and
uses 2.5 ms for the time slice value. The UTS algorithm is
representative of the mechanism in PowerVM virtualization,
in which a fixed scheduling period can be shared by up to 10
vCPUs through micro partitioning. The prominent parameters
used in this work are modeled after those used in the most
recent related paper [3]. These include the number of co-
scheduled applications, the baseline CPU scheduling algorithm
and time slice value, and the capacity of the LLC. Further,
the LLC capacity of 2 MB per core used in this work is
representative of the LLC capacity in server class machines.

TABLE II
MACHINE CONFIGURATION

Processor 4 GHz, single issue, in-order
L1 I-cache 32KB, 2-way
L1 D-cache 32KB, 2-way

L2 cache 256KB, 4-way
LLC 2 MB, 16-way, 24 cycles

Main Memory 400 cycles

V. RESULTS AND ANALYSIS

Hereafter, we use the word cache to refer to the LLC by
default. We now attempt to answer the following questions
by relying on experimental results: What is the performance
improvement that can be obtained by adopting ETS? How
accurately can we estimate the number of CS misses?

A. Advantage of Using the ETS CPU Scheduling Algorithm

The results obtained by employing the ETS RR scheduling
algorithm described in § III-B are shown in Figure 6 for
all SPEC CPU2006 benchmarks. The results correspond to a
cache capacity of 2 MB. In each case, a total of 8 applications
are co-scheduled onto a single core. We study the impact of CS
events on the application indicated by the X-axis label, which
is the application-of-interest. We apply the ETS algorithm to
it and modify its time slice value. The time slice value for the
remaining applications is 2.5 ms, which is the baseline time
slice value of the UTS RR CPU scheduling algorithm. The



evaluation metric used is the IPC corresponding to the execu-
tion of 500 million instructions. The values corresponding to
the ETS algorithm are normalized with respect to the values
for the UTS algorithm.
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Fig. 6. (a) IPC improvement by adopting the ETS RR CPU scheduling
algorithm (b) Distribution of allocated time slices

Figure 6(a) shows the improvement in IPC obtained by
employing the ETS algorithm compared to that obtained using
the UTS algorithm (2.5 ms time slices). The applications are
sorted in the ascending order of the benefit derived from the
ETS algorithm. Figure 6(b) shows the distribution of time
slices allocated by the ETS algorithm. Some applications such
as libquantum and calculix are minimally impacted by CS
misses. The time slice allocation distribution shows that the
time slices allocated to these applications are predominantly
of duration 2.5 ms. In contrast, applications such as hmmer,
bzip2, and astar are severely impacted by CS misses. The
distribution shows that the time slices allocated to these
applications are predominantly of duration 5 ms, 7.5 ms,
and 10 ms. The ETS algorithm allocates longer time slices
on the basis of their utility to applications. The maximum
improvement in IPC is obtained in case of hmmer and it is
as much as 54%. The remaining applications span the entire
spectrum of performance improvement.

The diversity of the results shown in Figure 6 reinforces
our hypothesis that we should track the number of CS misses
dynamically and allocate longer time slices to those applica-
tions that suffer from CS misses significantly. Out of a total
of 29 applications studied, the performance improvement due
to the ETS algorithm is 5% or more in case of 15 applications
and more than 10% in case of 11 applications. Figure 6(a)
also shows the IPC results corresponding to the case when
a constant value of 10 ms is used for the time slice. The
results are once again normalized with respect to those for
the UTS algorithm (2.5 ms time slices). The IPC results
obtained using the ETS algorithm are within 4% of the results
obtained using a constant value of 10 ms for the time slice.
In summary, the results provide substantial evidence in favor
of the ETS algorithm to address the negative performance
impact of CS events. It should be noted that the ETS algorithm
is implemented in software. Therefore, it can be customized
and optimized for a target system. However, we expect that

the implementation will be kept simple to contain the direct
overhead associated with a CS event. In our implementation,
the additional cost is approximately 10 instructions.

The cumulative CPU time allocated by the ETS algorithm
to all applications (including the application-of-interest) is
equal to that allocated by the UTS algorithm. We demonstrate
this using an example in Figure 7. For clarity of discus-
sion, we consider the case where there are a total of 3 co-
scheduled applications. However, the reasoning also applies
to co-schedules involving a different number of applications.
‘P3’ is the application-of-interest. The time slice allocation
performed by the UTS algorithm is shown in the row labeled
‘2.5 ms’. The time slice allocations made by the ETS algorithm
for three different scenarios are shown in the other rows. While
the ETS algorithm allocates longer time slices, it allocates
fewer number of such longer time slices. As the length of the
allocated time slice increases, the number of allocations of the
time slice decreases. Therefore, the ETS algorithm offers the
same fairness guarantees as the UTS algorithm.

10 ms

7.5 ms

5 ms

2.5 ms

Time

P1 P2 P3 P1 P2 P3 P1 P2 P3 P1 P2 P3 P1 P2 P3 P1 P2 P3 P1 P2 P3 P1 P2 P3

P1 P2 P1 P2 P3 P1 P2 P1 P2 P1 P2 P1 P2 P1 P2 P1 P2

P1 P2 P1 P2 P1 P2 P3 P1 P2 P1 P2 P1 P2 P1 P2 P1 P2 P1 P2

P1 P2 P1 P2 P1 P2 P1 P2 P3 P2 P1 P2 P1 P2 P1 P2

P3 P3 P3

P3

P1 P3

Fig. 7. An example to illustrate the allocation of time slices by the ETS
algorithm

Latency or response time, time elapsed between two consec-
utive schedules of an application, is another important aspect
of a CPU scheduling algorithm. In Figure 8, we provide
quantitative information regarding the latency behavior of
three algorithms - UTS algorithm with 10 ms time slices,
UTS algorithm with 2.5 ms time slices, and ETS algorithm.
For an application indicated by the X-axis label, the Y-axis
value corresponds to the latency incurred by a co-scheduled
application. The average latency for UTS-10, UTS-2.5, and
ETS is 30 ms (horizontal solid line), 7.5 ms (horizontal dotted
line), and 7.5ms (rectangles) respectively. While the standard
deviation in latency for UTS-10 and UTS-2.5 is 0, the value
for each application in case of ETS is shown in the form
of error bars above the rectangles. The maximum value of
standard deviation is 3.7 and is observed in case of hmmer.
From the data presented in Figure 8, it can be inferred that
the latency behavior of the ETS algorithm is very similar to
that of UTS-2.5. In addition, the performance behavior of the
ETS algorithm is nearly identical to that of UTS-10 (Figure
6(a)). ETS algorithm adapts to the dynamic behavior of the
applications in order to achieve the best of both worlds.

The context switch performance penalty varies not only
across applications but also over the duration of execution of
an application. This is because applications go through phases
of execution. The transitions between time slices can be cate-



gorized into two types - Same and Different. Same indicates a
transition from a time slice value to the same time slice value
and Different indicates a transition to a different time slice
value. A Different transition happens when the number of CS
misses changes considerably from a time slice to the next.
Hence, the fraction of Different transitions is indicative of the
change in the CS miss behavior over the duration of execution.
In our evaluation, the fraction of Different transitions is 10% or
more for a total of 19 applications. A maximum value of 68%
is recorded in case of xalancbmk. The results corroborate our
hypothesis that the CS miss behavior varies over the execution
of an application.
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Fig. 8. Latency behavior of UTS-10 (horizontal solid line), UTS-2.5
(horizontal dotted line), and ETS algorithms. Error bars indicate the standard
deviation in latency for the ETS algorithm. The latency behavior of ETS
algorithm is very similar to that of UTS-2.5

B. CS Cost Estimation Accuracy

The ability to dynamically estimate the cost of a CS event
is central to the operation of the ETS algorithm. We use
the augmented CS cost estimation mechanism described in
§ III-A to estimate the number of CS misses per sharer. The
corresponding results are presented in Figure 9. Specifically,
we provide the results when 2 cores share a 4 MB cache.
The sharers are identified uniquely through X-axis labels. The
experiment used 256 sample sets (SS) which correspond to
1
16

th fraction of the total number of sets. We evaluated various
values for the number of SS and narrowed it down to 1

16

th

fraction of the total number of sets. This choice achieves a
good trade off between area and accuracy. The estimation error
is represented in percentage terms and indicates the separation
between the value computed using the SS and the actual value.
The average value of the estimated error across all sharers is
2.5% (excluding milc). The average error and the estimated
error for most applications are both below 5% indicating
the usefulness of the proposed mechanism. We address the
inaccuracy in estimation for milc in § V-C.

It is important to consider the mechanism that is employed
to partition the cache among the sharers and how the mecha-
nism affects CS miss count estimation. The results presented
in this section are for the case when the ways are equally
partitioned among the sharers and the LRU replacement policy
is employed within each partition. We will now discuss the
impact of more advanced partitioning mechanisms on the
accuracy of CS cost estimation. Global LRU replacement
policy allows for dynamic sharing based on demand. However,
it was previously shown that demand for cache does not always
translate to benefit from cache [4]. Several proposals were
made to improve the benefit derived from a shared cache

- utility based cache partitioning (UCP) [4], thread aware
dynamic insertion policy (TADIP) [5], and software based
shared cache management techniques such as page coloring.
The common goal of these works is to determine what is likely
to be the optimum partition of the shared cache and enforce the
applications to stay within the limit of the determined optimum
partition. These methods allocate ways of sets or sets of cache
among the applications. Such structured allocation lends itself
well to the proposed CS cost estimation mechanism which
works on the principle of uniform sampling. In summary, we
anticipate that employing the proposed CS cost estimation
scheme in conjunction with advanced partitioning mechanisms
will result in as accurate estimates as we obtained here.
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Fig. 9. Percentage error in estimation of the number of CS misses when 2
applications share a 4 MB LLC

We also evaluated the accuracy of the CS cost estimation
mechanism for a private cache and when 4 cores share a 8
MB cache. The average value of the estimated error across
all workloads is 2.7% and 2.5% respectively (excluding milc).
Estimating the number of CS misses to within a 10% value
can provide very important information for a CPU scheduling
algorithm to factor the CS event cost. More concretely, we
anticipate that the trend for the number of CS misses rather
than the actual value will be used by the CPU scheduler. We
discussed the performance improvement obtained using one
manifestation of such a scheduler in § V-A.

C. Addressing CS Cost Estimation Inaccuracy

In § V-B, we pointed out that the estimated value of CS
misses is inaccurate (by 50%) for milc. We now propose
a mechanism, which incurs minimal overhead, to determine
when the CS miss count estimate is inaccurate. The ATD
presented in § III-A is organized as two logical entities with
each one comprising of half the original number of sample
sets. We associate each logical entity with a separate CS-
MISS-CNT counter. The hardware overhead of the enhanced
estimator is this additional counter and a small amount of logic
necessary to organize the logical entities. It should be noted
that the physical organization of the ATD is still the same as it
is for the original estimation mechanism described in § III-A.

The estimation mechanism works as before with the SS
updating the respective counters for the number of CS misses.
When the application is being switched out, the values of the
two counters are used to determine if the estimated value is
accurate. Specifically, we compute the ratio of the absolute
difference of the two counter values and their sum. A large



value of this ratio indicates that the estimate is inaccurate.
Else, the computed sum of the two counter values serves as
the estimated value for the number of CS misses corresponding
to the sample sets. This number is scaled to the total number
of sets in the cache to get the final estimated value. In our
evaluation, while the value of the specified ratio is 0.30 for
milc, it is ≤ 0.15 for all other benchmarks. The computed ratio
is a measure of divergence between the two counter values.
When the estimate is inaccurate, the divergence is large. If
this is the case, we ignore the estimate and keep the time
slice value intact.

D. Hardware Overhead

In this section, we quantify the additional hardware neces-
sary to support the ETS mechanism. The storage component of
the overhead consists of the following: (1) tags for the sample
sets in the ATD and (2) counters for tracking the number of CS
misses. This component is computed in Table III. We assume
a physical address space of 40 bits and use the same baseline
LLC capacity of 2 MB used previously. The LLC is organized
as a 16-way associative cache for a total of 2048 sets. Note
that we used 1

16

th fraction of total sets for the number of
sample sets throughout this paper. Additional logic is required
in order to invalidate the ATD entries (to emulate a CS event),
detect a CS miss (a 2-ip logic gate), and increment the CS-
MISS-CNT counter. The overhead due to the extra logic is
small and negligible similar to the storage overhead.

Prior to developing the sampling based framework, we
attempted to make use of hardware performance counters for
CS cost estimation. The advantage of the latter approach is
that it does not require any additional hardware. However, our
evaluation uncovered multiple shortcomings of this approach.
After realizing its various limitations, we developed the sam-
pling based framework.

VI. IMPACT OF CACHE OPTIMIZATIONS ON CS MISSES

In Section I, we mentioned that the mechanisms which
attempt to improve the cache hit rate by addressing the
traditional cache misses exacerbate the problem associated
with CS misses. Such optimizations attempt to retain more
data which will be useful in the future and CS event results in
the loss of this data. Now, we evaluate the impact of improving
the replacement algorithm and increasing the cache capacity
on the number of CS misses. We also assess the accuracy
of the CS cost estimation hardware when it is applied to
advanced replacement algorithms. Furthermore, we provide
the performance improvement results obtained by using the
ETS mechanism in conjunction with these algorithms. In our
experiments, the first level and the middle level caches use the
LRU replacement policy and our replacement policy studies
are limited to the LLC.

A. Replacement Algorithm

Solutions proposed to address the shortcomings of the
LRU algorithm include dynamic insertion policy (DIP) [6],

TABLE III
STORAGE OVERHEAD TO SUPPORT THE ETS MECHANISM

Size of an MTD entry (address + meta data) 4 B
Size of an ATD entry (valid-bit) 1 bit

Number of ATD entries (16 per set × 128 sets) 2048
Overhead of ATD 256 B

Size of counter
(log 2 {number − of − cache− lines− in−ATD})

1.5 B

Overhead due to 2 counters 3 B
Area of baseline LLC (128 kB tags + 2 MB data) 2176 kB

% increase in LLC area (260 B/2176 kB) 0.012%

re-reference interval prediction (RRIP) [7], and signature-
based hit prediction (SHiP) [8]. We evaluated the accuracy
of estimation hardware for DRRIP and SHiP algorithms using
the mechanism described in § V-B. The average percentage
error in estimation is 2.8% and 2.4% for DRRIP and SHiP
algorithms respectively. These results demonstrate that the
estimation hardware, because it is based on sampling, lends
itself very well to other replacement algorithms. Next, we
assessed the impact of the replacement algorithm on the
number of CS misses suffered by an application. For several
benchmarks, the number of CS misses increased pronouncedly
for DRRIP and SHiP when compared to LRU. The maximum
increase in the number of CS misses (by a factor of 20X)
is observed in case of sphinx3 for both DRRIP and SHiP.
The geometric mean across all benchmarks is 1.6 and 2
for DRRIP and SHiP respectively. These results substantiate
our hypothesis that adopting advanced replacement algorithms
accentuates the problem associated with CS misses. The IPC
results obtained using the ETS RR scheduling algorithm for
DRRIP and SHiP policies are within 4% of the results obtained
using a constant value of 10 ms for the time slice. It can be
inferred from these results that the ETS algorithm is equally
applicable for advanced replacement policies. For both DRRIP
and SHiP policies, the performance improvement due to the
ETS algorithm is 10% or more in case of 11 applications.

B. Cache Size

We now consider the impact of another important opti-
mization - increasing the capacity of the cache - on the
number of CS misses. We obtained the results for three
different cache sizes - 1 MB, 2 MB, and 4 MB - and three
replacement algorithms - LRU, DRRIP, and SHiP. In general,
for all benchmarks and replacement policies, the number of
CS misses increased with the cache size. For 25 applications,
the growth is by a factor of 5X or more from 1 MB capacity
to 2 MB or 4 MB capacity. For cactusADM, with the DRRIP
replacement policy, the number of CS misses increased by
a factor of 101X from 1 MB capacity to 4 MB capacity.
The results indicate that increasing the cache capacity has a
significant impact on the number of CS misses experienced,
resulting in a commensurate performance penalty.

In summary, cache optimizations accentuate the problem
associated with CS misses. Therefore, in the presence of such
optimizations, estimating the CS miss cost accurately and



incorporating the estimate into CPU scheduling algorithms
become even more important.

VII. RELATED WORK

Studies related to context switching have received much
attention from both the industry and the academia over a
long period of time. We summarize, compare, and contrast
the works that closely relate to the techniques proposed in
this paper under four different categories.

A. Performance Impact of Context Switching

There were many studies which aimed at understanding the
performance impact of CS events [9–16]. They considered
the influence of additional cache misses and page faults on
performance. The proposed solutions include job speculative
prefetching, CPU scheduling guided by memory scheduling,
and intelligent process scheduling. Most of the works con-
cluded that the indirect overhead, due to cache perturbation,
associated with CS events is significant. We attempted to
address this overhead through our proposal.

B. Analytical Models

Several analytical models were proposed to explain the
relationship between an application’s temporal reuse behavior
and its vulnerability to CS misses [17–21]. Such models
need to factor in all essential variables to have a sufficient
resolution. Analytical models make certain assumptions in
order to render the task of devising the model tractable. For
example, the model by Liu et al. [21] is designed under the
assumption of LRU replacement policy. However, advanced
replacement algorithms were proposed which perform better
than the LRU algorithm. Also, analytical models are suitable
for offline analysis but the feasibility of their implementation
in hardware while incurring a low area overhead is not
considered. Our solution approach is implemented using very
low hardware overhead to work in a dynamic environment for
any cache configuration, thereby addressing the limitations of
the analytical models.

C. Employing Prefetching to Cope with CS Misses

The performance degradation due to CS misses can be
addressed through two different means: by (1) increasing the
time slice value and (2) prefetching the cache state just before
or when the new schedule starts. The former method is a
preventive measure while the latter is a cure. Prefetching
was suggested to mitigate the cost of additional cache misses
incurred because of a CS event. The general idea is to record
application’s locality at the time when it gets swapped out.
The locality is restored through prefetching the next time
application gets CPU time. Previously proposed solutions that
employ prefetching differ in how the locality is stored and
restored. Cui et al. [22] employ Global-history-list (GHL)
prefetching. GHL maintains a complete list of cache lines,
which is ordered by recency of use. Daly et al. [1] studied the
impact of CS misses in highly partitioned virtualized systems.
They proposed cache restoration as a solution to prefetch the

working set and thereby warm the cache. GHL and cache
restoration, while they differ in implementation details to some
extent, perform similarly. GHL performs slightly better at the
expense of more hardware and complexity. In the most recent
related work [3], the authors proposed methods to reduce the
bandwidth overhead of these prefetchers.

Brown et al. [23] proposed accelerating post-migration
thread performance by predicting and prefetching the working
set of the application. The solution captures access behavior
of a thread and summarizes it into a compact form pre-
migration. On the new core, the summary is used to prefetch
appropriate data to create a warm state. Prefetching the data
after a CS event serves to cure the cold start problem. However,
ETS works to minimize the number of cold starts for those
applications for which it matters. The techniques presented in
this paper can provide guidance as to when prefetching can
be beneficial and when it is not likely to help. Zebchuk et
al. [3] identified the inability of cache restoration prefetchers
to dynamically adapt to the workload behavior as their main
limitation. Our framework can be potentially used in conjunc-
tion with prefetching to address this key drawback. They can
complement each other to achieve a synergistic effect.

D. Dynamic Set Sampling

Dynamic set sampling (DSS) was previously used to achieve
multiple goals. The key intuition behind set sampling is that
it is sufficient to monitor a relatively small fraction of the sets
in the cache in order to understand the behavior of the entire
cache. DSS was used in conjunction with set dueling to decide
which of two or more policies performs the best at any given
point. This technique was used to select the best performing
replacement policy - LIP versus BIP [6], MLP-aware versus
traditional [24], and SRRIP versus BRRIP [7]. In a system
with private LLCs, it was also used to determine if each cache
should act as a spiller or a receiver [25]. In the context of a
shared cache, it was used to determine whether each thread
among a group of threads sharing the cache should implement
LIP versus BIP policy [5]. Also, in the context of a shared
cache, DSS was used independently (without set dueling) to
partition the ways of the cache in the best possible manner
by monitoring utility [4]. To our knowledge, this is the only
instance where DSS is used to estimate the absolute value of a
parameter like we used it to estimate the number of CS misses.

VIII. CONCLUSION

In a system employing multi-tasking, an application suffers
from cache misses due to context switch (CS) events in addi-
tion to the typical cache misses. CS misses happen as a result
of the displacement of the cache state, which is caused by other
applications intervening between two consecutive schedules of
an application-of-interest. CS misses are more of a problem
in systems which support multi-tasked virtualization. Such
systems experience severe cache pollution as a consequence
of the additional degree of multi-tasking, above and beyond
the regular OS-level multi-tasking. However, the extent to
which an application suffers from CS misses varies from one



to another, depending on the temporal reuse behavior. While
some applications suffer only mildly, others suffer severely.
We made the following contributions through this paper:

1) We demonstrated that applications suffer by varying
degrees because of context switching. In response to this
phenomenon, we proposed to estimate the penalty due to
a CS event and use it to facilitate intelligent time slicing
by employing Elastic Time Slicing (ETS). The intuition
behind ETS is to provide longer yet infrequent time
slices to those applications that are affected severely,
while keeping the time slices allocated to the unaffected
applications intact.

2) We developed a hardware-based dynamic CS cost esti-
mation mechanism which incurs low area overhead. We
characterized the accuracy of estimation of the proposed
mechanism for multiple configurations and showed that
the mechanism is very reliable.

3) We provided insights into how the CS cost estimate can
be incorporated into the design of a CPU scheduling
algorithm. We validated the potential of ETS to reduce
the negative impact of CS events on performance with-
out sacrificing on response time behavior.

4) Furthermore, we evaluated the impact of advanced re-
placement algorithms and increasing the cache size on
CS misses and found that these optimizations aggravate
the problem associated with CS misses.

The ETS algorithm developed in this paper allocates longer
time slices on the basis of their utility to applications. For
various cache management policies, the speedup obtained
using the ETS algorithm is within 4% of that realized using
a constant value of 10 ms for the time slice. We augmented
the UTS RR CPU scheduling algorithm in order to derive
the ETS RR CPU scheduling algorithm. However, the ETS
algorithm is implemented in software and can be optimized
for a target system. One possible direction for future research
is to investigate how CS cost estimate can be incorporated
into other CPU scheduling algorithms while respecting their
original objectives. The hardware overhead of the proposed
CS cost estimation mechanism is only 0.01% for a 2 MB
cache. We used the estimated cost of a CS event, in terms
of the number of CS misses, to modify the time slice in an
elastic manner. In case of cache restoration prefetchers, the
estimated number of CS misses can provide guidance as to
when prefetching can be beneficial and when it is not likely
to help. The inability of all cache restoration prefetchers to
dynamically adapt to the workload behavior has been identified
as their main limitation. Our CS cost estimation framework
can be potentially used in conjunction with them to address
the specified key drawback.
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