
HeteroCheckpoint: Efficient Checkpointing for
Accelerator-based Systems

Sudarsun Kannan, Naila Farooqui, Ada Gavrilovska, Karsten Schwan
College of Computing

Georgia Institute of Technology, Atlanta, Georgia, USA
sudarsun@gatech.edu,{naila, ada, schwan}@cc.gatech.edu

Abstract—Moving toward exascale, the number of GPUs in
HPC machines is bound to increase, and applications will spend
increasing amounts of time running on those GPU devices. While
GPU usage has already led to substantial speedup for HPC codes,
their failure rates due to overheating are at least 10 times higher
than those seen for the CPUs now commonly used on HPC
machines. This makes it increasingly important for GPUs to have
robust checkpoint/restart mechanisms. This paper introduces a
unified CPU-GPU checkpoint mechanism, which can efficiently
checkpoint the combined GPU-CPU memory state resident on
machine nodes. Efficiency is gained in part by addressing the
end-to-end data movements required for checkpointing – from
GPU to storage – by introducing novel pre-copy and checksum
methods. These methods reduce checkpoint data movement cost
seen by HPC applications, with initial measurements using
different benchmark applications showing up to 60% reduced
checkpoint overhead. Additional exploration of the use of next-
generation storage, like NVM, show further promises of reduced
checkpointing overheads.

I. INTRODUCTION

It is a well-known fact that low overhead fault tolerance
for HPC applications is critical to increasing machine sizes
leading to higher failure rates. Recent studies, in fact, point
to failure intervals for applications as low as once every 30
minutes, and with increasing levels of node heterogeneity,
these intervals are likely to see further shrinkage. For instance,
failure data from the TSUBAME2.0 [3] supercomputer with
its high GPU/CPU ratio shows that GPU failure rates are as
high as 7*10-6 failures/sec compared to its CPU failure rates
of 0.5*10-6. At the same time, to gain higher performance,
applications are spending increasing amounts of time running
on GPUs vs. CPUs, one case in point being the PICON code
that runs entirely on GPUs, using CPUs only for high-level
orchestration tasks [1]. It is critical, therefore, to develop an ef-
ficient GPU-based fault tolerance methods on HPC machines.

This paper addresses node failures on heterogeneous high
end machines, by creating and experimenting with a unified
checkpoint/recovery (C/R) mechanism able to deal with both
CPU and GPU failures. While such mechanisms have been
well-studied for CPU-based hosts, with GPUs on heteroge-
neous hosts, a key issue arising for checkpointing GPU state
is the lack of direct I/O access from current GPU devices.
For checkpointing, GPU-resident data must be moved from
the device memory (GDRAM) to CPU accessible DRAM and
finally, to a nonvolatile (NV) storage. With increasing device

memory capacity and application footprints, data movement
needs can be substantial, compared to the available end-end
bandwidth from GPUs to NV storage, with potential bottle-
necks arising both at (i) the GDRAM-DRAM PCI interface
and (ii) the interface to NV storage.

GPU manufacturers are aware of the limitations caused
by insufficient GPU-to-host memory and subsequent stor-
age bandwidths. NVIDIA, for instance, offers CUDA-based
streaming and host-level memory pinning to reduce the band-
width impact. At the same time, new non-volatile mem-
ory (NVM) technologies like phase change memory (PCM)
promise increased bandwidths for accesses from DRAM-to-
NV storage (approx. 2GB/sec) compared to (200-300 MB/sec)
in SSDs. However, with continuing rapid increases in GPU
capabilities and memory capacities, limited data transfer band-
widths remain a concern, opening opportunities for additional
software solutions to efficiently save and restore GPU-resident
data state.

Our work contributes to improving fault tolerance for het-
erogeneous HPC machines by development of a low overhead
GPU checkpoint mechanism. Extending our previous work
leveraging new NVM technologies to efficiently checkpoint
host-level state [2], this unified GPU/host checkpoint/restart
(C/R) mechanism directly addresses the limited bandwidth
from GPUs to NV storage, as follows:

1) efficient use of NVM node-level storage via a memory-
based C/R interface;

2) chunk-level data pre-copy to address limitations in end-
to-end bandwidth (from device to storage);

3) techniques to eliminate redundant data, using data chunk
prediction and checksums; and

4) experimental evaluation demonstrating the effectiveness
of C/R with well-known GPU benchmark applications.

II. BACKGROUND AND RELATED WORK

Checkpointing methods. Checkpointing/Restart is a well-
known fault tolerance technique where the consistent ap-
plication state is stored in a NV storage at frequent inter-
vals. The frequency depends on the mean time to failure
(MTTF) of the execution environment. Checkpoints can be
application transparent [3], [4] or application [5] initiated.
Transparent checkpoints do not require application changes,
but the entire memory state is saved. Incremental approaches
[6], [4] are beneficial only when application state does not

2014 44th Annual IEEE/IFIP International Conference on Dependable Systems and Networks

978-1-4799-2233-8/14 $31.00 © 2014 IEEE

DOI 10.1109/DSN.2014.76

738

change substantially and are captured by setting the dirty
bit for memory pages that are modified across checkpoint
iterations. Unlike CPU, most of the virtual memory interfaces
for GPU device memory are not accessible due to closed
device drivers. Further, achieving asynchrony among GPU
threads is difficult as the global memory is accessible by all the
threads. Therefore, before saving device memory, all threads
need to synchronize. Finally, for HPC applications [7] with
large memory footprints (in several GBs, greater than the PCI
or the NV storage bandwidth), data movement costs can be
very high. Checkpoints can be to local storage in compute
nodes (NVM/SSD) or remote storage which can be buddy
node or a parallel file system (PFS). The local and remote
checkpoint intervals are guided by soft errors and hard errors
respectively. Soft errors require only application restart (80%
of failures [8]) unlike hard errors due to failure of a system
component/s. Further, local checkpoints are generally coordi-
nated (with compute phase), whereas remote checkpoints can
be asynchronous with compute phase.
GPU checkpointing. While the need for GPU fault tolerance
and the methods of improving checkpoint performance is in
a nascent stage of research, there are quite a few proposals
[9], [10], [11], [12] that have been inspired from well studied
CPU checkpointing methods. Xu et al. [11] was one of the first
to discuss the need for fault tolerance and proposed a basic
checkpoint mechanism. Laosooksathit. S et al. [10] proposed a
two level GPU checkpointing approach, i.e., local and remote
checkpoint methods and also provided extensive modeling.
Bautista-Gomez et al. [13] proposed a topology-aware Reed-
Solomon encoding in a three-level checkpoint scheme for
hybrid systems with GPUs. CheCUDA [11] proposed a tech-
nique of overlapping computation with data movement. One
key difference between our work and others are that, our
work stresses on the fact that usage of end-end bandwidth
by the checkpoint process needs to be improved and also
provides techniques that can improve the overall performance
of applications. Further, our work also considers the use of
next generation storage technologies for GPU checkpoint and
points out that just replacing disks with NVM is not sufficient
for addressing end-end bandwidth issues. Agarwal. S [14]
discuss incremental checkpointing for CPUs by accessing
page protection data, but such techniques are hindered on
the GPU due to non-availability of open source drivers. In
our current work, we use a data chunk checksum based
checkpoints. We also discuss a possible solution for using
dynamic instrumentation that captures data modifications and
save only modified application state. Other work like par-
allel compression checkpointing focus reducing the overall
checkpoint size, but our chunk-based scheme is more focused
towards reducing the impact of bandwidth limitations.
NVM for GPU-CPU checkpoints. Future NVMs like PCM
and Memristors [15], offer hardware-based persistence with
100x faster access rates compared to existing HDDs and SSDs.
Faster access speeds combined with byte addressability, page-
based virtual memory support, and higher storage density
makes NVMs a promising candidate for reducing the impact

of DRAM scalability issues in sub-45nm technology nodes,
and to provide persistence for fault tolerance. However, NVMs
have certain hardware limitations, including slow writes, low
die bandwidth, and high write costs, write latencies are 10x
higher and bandwidth is 4x lower compared to DRAM, and
other major limitations include 108 write durability compared
to 1016 for DRAM and 40 times higher write energy/ bit.
End-end checkpoint bandwidth. Checkpoint time can be
loosely defined as the time taken to move checkpoint data
from the GPU device to a memory-based NV storage. The
GPU-NVM bandwidth plays a key role in reducing the
checkpoint time. As discussed earlier, NVMs have relatively
lower bandwidth (2GB/sec) compared to the device-host (PCI)
bandwidth, and hence the checkpoint speeds are dominated
by min(PCI,NVMbandwidth). While several studies [9],
[10], [11], [12] have considered a checkpoint approach of first
moving data to DRAM through PCI and from overlapping
DRAM-storage device with computation, the main issue with
such approaches is that, when running multiple instance of an
application across several nodes, if a failure of application
checkpoint happens in one node, all the checkpoint data
need to be erased across all the nodes and restart from
previous consistent state if one exists. A checkpoint is more
like a transactional commit, and hence a complete end-end
checkpoint is required to improve failure reliability. Further,
moving all GPU data to DRAM and not immediately flushing
them from DRAM to NV storage before next compute iteration
would lead to substantial DRAM pressure. With DRAM scal-
ability bottlenecks already well-known, such approach does
not seem to be feasible. When DRAM is not a constraint,
then checkpoint bandwidth is dependent on PCI bandwidth.
Figure 1 below characterizes both approaches.
Using NVM as virtual memory. The benefits of using NVM
as virtual memory [2], [16] include i) ability to exploit VM
paging and protection, ii) hiding high write latencies using
processor cache, iii) byte addressability and hence avoiding
serialization and iv) ability to use NVM not only for storage,
but also as heap for processing. Further, current file systems
are not optimized for NVMs and require redesign. We ex-
tend our prior work on using NVM to support CPU-based
checkpoint [2], [17] to support GPU checkpoints. Our NVM
design is based on the hybrid memory model where NVM is
connected to the memory controller and can be accessed by
load/store instructions. GPU applications use specialized NVM
interfaces, in a similar manner as with explicit application-
initiated HPC checkpointing. During computation, application
data remain in GDRAM instead of directly writing to NVM, to
avoid a substantial application slowdown (up to 25% [16] for
certain classes of write-intensive HPC codes). HeteroCheck-
point takes advantage of NVM byte addressability and NVM
use as a persistent heap by checkpointing in granularity
of memory objects called chunks. To deal with bandwidth
limitations and slow writes to NVM, it uses mechanisms like
pre-copy and shadow buffering of chunks. More details about
NVM OS level support can be found in [2], [17].
Basic Checkpoint Model. To solve these bandwidth issues,

739

����� �������	��

��

�������	
��

��������

�������	
���

��������������

�	��

Fig. 1. GPU-Based Checkpoint Design
Functionality Interface
Allocation chkCudaAlloc(”varname”)
Commit chkCommit(void)
Recover/restart chkCudaAllocRestart(”varname”)
Pre-Copy chkHint(ptrlist)
Checksum chkValidateChksm(void)

TABLE I
GPU CHECKPOINT INTERFACE

we use a simple model and then discuss the checkpointing
methods. The model quantifies the checkpoint time in terms of
PCI and storage bandwidth and shows that, for a low overhead
checkpoint, overcoming the bandwidth limitation is a key.
Ttotal = Tcompute + Tcheckpoint + Trestart + Trecovery

Tcheckpoint = N ∗ (chckpt.size/BPCI +
chckpt.size/Bstorage)
N = fn(MTTF)e.g., Y oung′smodel
where Ttotal is total run time, N - No. of checkpoints
BPCI = PCIB/W,
Bstorage- NVM B/W, MTTF - Mean time to failure

III. DESIGN

We next discuss the key design principles of our checkpoint-
ing mechanism and propose our novel techniques that reduce
the overall end-end bandwidth limitations.
Storage oblivious interfaces using shadowing. During
checkpoint, the data from GPU memory can be moved to
DRAM or NVM. But the application interfaces for checkpoint
need to be oblivious of the underlying storage device and their
bandwidth. Further, for optimizing checkpoints, it is important
to gain information on each memory allocated variable which
changes over time. To enable variable related information,
applications are provided with a custom allocation wrapper,
shown in Table I, to specify the application variables that
need to be checkpointed. We call each such variable a chunk.
Chunk size can vary between a few bytes to pages and can be
multidimensional. The checkpoint library keeps track of each
chunk. For all GPU allocated chunks, an equivalent destination
chunk is created in NVM. An application can have several
such chunks (variables). The key principle of using chunks
creates independence between different application variables.
This facilitates asynchronous data checkpoints across GPU
threads. Note that, asynchrony is restricted within a checkpoint
interval and does not affect correctness.
CUDA streams for checkpoint: CUDA streams are the
channels which define the order of data movement between
a GPU and CPU and the CUDA kernel execution. By default,
all kernel memory and movement operations are in one stream
and as a result sequential. To enable parallel data movement,
each application chunk (i.e., CUDA variable) has its own
stream. When application decides to checkpoint,

• All GPU threads are synchronized using a barrier

• On a checkpoint call, all GPU chunks are moved to NVM
• Moving chunks from GPU to NVM can start even before

an application call for a coordinated checkpoint
Applications are provided with a custom allocation interface,
along with an interface to start checkpoint and restart, and to
provide hints for pre-copy operations (see Table I). Figure 2
shows the pseudocode of the proposed checkpoint mechanism.
Reducing the impact of bandwidth. The main contribution
of this work is to reduce the bandwidth impact of check-
pointing by employing software techniques that are suited
for GPU-based checkpoints. We will discuss next two such
optimization techniques suited for HPC applications. While we
focus specifically on bandwidth issues in moving checkpoint
data from GDRAM to NVM , our techniques are applicable for
addressing bandwidth issues in GDRAM-DRAM checkpoints
also (as discussed in Section II).
Chunk level data pre-copy (PCP). Most HPC applications
are long running, with multiple iterations and can have
multiple GPU kernels (e.g., molecular dynamics). Also, an
application can have many heap variables (chunks) that are
modified across different kernels. Some chunks are modified
across all iterations until a coordinated local checkpoint is
taken. Identifying chunks that are not always modified across
kernels and can be pre-copied even before a synchronous
checkpoint is started. Figure. 2 shows an application with
four kernels and variables one to seven. Not all variables are
modified across all kernels. In fact, variables two and three
are last modified by second kernel. If the code has reached an
iteration count corresponding to the checkpoint, variable 1,2,3
can be checkpointed (pre-copied) in parallel with computation
of kernel three and four, even before a coordinated checkpoint
is actually started. This can reduce the total data moved
exactly at checkpoint. We refer to this technique as chunk
pre-copy (PCP) based checkpoints. Note that, there could be
multiple threads trying to move data across to NVM. Starting
this movement earlier, reduces the GDRAM-NVM interface
traffic, reducing the impact of the NVM bandwidth limits.
These principles are applicable to any other storage medium
like SSD or even DRAM, constrained by interface bandwidth.
We believe such methods are important for increasing threads
per node in future exascale machines, reducing the per-thread
effective bandwidth to storage/NVM.

Figure 3 shows a corresponding timing diagram to compare
the regular sequential approach with the pre-copy approach.
Block Ci indicates the application execution interval and Li
indicated application local checkpoint interval. The upper half
shows an execution pattern of a regular checkpoint approach
where application execution and checkpoints are sequential.
The lower half shows the pre-copy approach where the blocks
L1, L2, L3 start even before the completion of the respective
execution blocks. As a result, the pre-copy method reduces
application runtime, as shown in Section V.

To enable PCP support in the GPU, we need to rely on
developer hints for identifying variables not modified any fur-
ther across the iteration. In the Figure 2, the pre-copy keyword
with corresponding variables var1, var2, var3, provides hints

740

�������	
������������
�
�������	������	���������	�������

���������������� ����!"""�
�������!�������! ����#"""�

���	���	�����������	��������
���������	�
����
����
�����
���������#��������$ ���%"""�
���������$��������$ ����&"""�

����	���	�����������	��������
�'������	(������

��)����

Fig. 2. GPU Checkpoint Psuedocode

���� �� ��

��	
��	����
	���������
�����������
�����
��������

�� ��

�� �� ��
�� ����

�� �� ��

Fig. 3. HeteroCheckpoint timing diagram

Redundant Likely
Redundant

Unlikely
Redundant

Not Redundant

Commit Do not commit

Fig. 4. Redundant data elimination by prediction

to the checkpoint mechanism for enabling pre-copy. In case
of CPU-only checkpointing using DRAM such developer hints
are not required [2], since using the page protection features
application pages can be ‘write protected’ and changes can
be easily tracked. In current GPUs, given the lack of access
to page level information, we rely on developer hints. In our
future work, we plan to develop compiler-based capture [18].
Redundant data elimination by prediction. One key insight
is that not all data chunks change across a given checkpoint
interval. There are some chunks which do not get modified
across iterations (read-only). Finding the checksum of such
chunks avoids an unnecessary copy from GDRAM to NVM,
and can reduce checkpoint overhead substantially. This tech-
nique is similar to the incremental checkpoint approach, but
we apply it to GPU-based checkpointing where incremental
data modifications are not easy to capture due to absence of
virtual memory page protection or page level dirty tracking
techniques [3]. In our current implementation, we delegate
checksum calculation to the CPU, but we also propose a more
optimal GPU checkpointing approach, using dynamic instru-
mentation, which obviates the need to perform checksums
altogether. Also, we do not apply checksums to memory page
granularity, but to a variable sized application chunks.
Delegating checksum calculation to CPU. For identifying
application chunk checksums, one approach is to use a GPU
kernel during a coordinated checkpoint time. But check-
sum calculation is a time-consuming operation. Calculating
checksums of each variable across checkpoint intervals can
severely impact the performance of the application. To avoid
checksum calculation from the application execution flow, and
to overlap with actual computation, the checkpoint calculation
is delegated to an idle CPU core. The CPU core after every
checkpoint step calculates the checksum of the chunk data
content. To reduce the checksum overheads further, a two
bit prediction mechanism is used to predict if checksum
calculation and chunk copy needs to be done.
Two bit prediction-based on checksums. Initially, all
checkpoint variables are assumed to be non-redundant (see
figure 4). Every chunk has a two bit prediction field which
indicates a prediction value if the chunk is redundant or not.
After every checkpoint is complete, a background thread first
extracts the checksum of a chunk. Then, it compares the
checksum with the previous checksum value. If the values are
different, then it indicates the chunk has been modified, and
the predicted value is incremented from redundant to likely
redundant state. With further modification, the chunk state is
incremented to unlikely redundant and finally not redundant.
This two-bit prediction field is incremented/decremented for
every checkpoint step. Only chunks which are in committing

stages and unlikely redundant are committed. The algorithm III
describes the steps.

Algorithm 1 Algorithm for eliminating redundancy
� %Main application thread:%

if current iteration == checkpoint step then
Synchronize
for i = 0 to GPUChunks do

if (chunk is not committed due to pre-copy)
(chunk.state != redundant or != likely redundant) then

Move data from GDRAM to DRAM to NVM
end if

end for
end if

� %Background application thread:%
for i = 0 to GPUChunks do

Get the DRAM shadow pointer of each chunk
Get the previous content hash
Generate MD5 hash and compare checksums
If checksums same, decrement chunk state bit

end for

Avoiding checksum calculation via dynamic instrumenta-
tion. An alternative to performing the checksum calculation
on the CPU is to use dynamic instrumentation of GPU kernels
to identify variables that get modified in each iteration, and
mark them as “dirty”. GPU Lynx [18], [19] is a dynamic
instrumentation engine for GPGPU applications, which en-
ables the creation of customized, user-defined instrumentation
routines that can be applied transparently at run-time for a
variety of purposes, including the facilitation of incremental
checkpointing for GPUs. With GPU Lynx, it is possible to
write instrumentations that are applied at the basic-block
and/or instruction-level of a GPU kernel.

For GPU checkpointing, an instruction-level instrumentation
can be provided such that on every global memory store
operation, the dirty bit for the corresponding variable is
updated. In the case of GPU kernels, all global memory load
and store instructions correspond to specific kernel arguments
passed into the function. Prior to executing the GPU kernel, a
data-flow analysis pass can be performed to link each global
memory store instruction with its corresponding kernel param-
eter, which represents the variable modified by that operation.
The dirty bit identifier of the corresponding variable is then set
to one on reaching a global memory store instruction. After
kernel execution, the dirty bit vector is read from the GPU, and
is checked to determine which variables have been modified
in the current iteration.

Although by definition dynamic instrumentation incurs run-

741

time overheads, this is overall a low overhead instrumentation,
requiring only a global memory update to a single bit-vector
on every global memory store instruction. The data required
to store the results from this instrumentation is also minimal,
possibly no more than a single integer, depending on the
number of variables that need to be monitored. We believe that
the dynamic instrumentation approach will significantly reduce
overall checkpointing overheads by obviating the need for
checksum calculation altogether, albeit at the cost of slightly
increasing kernel runtime overheads due to the instrumented
code. We have not implemented this scheme, but plan on
adding it as part of our future work.

IV. IMPLEMENTATION

The key goal of this work is to develop a GPU check-
pointing library that understands CUDA-based GPU applica-
tions, provides a flexible interface for GPU applications and
performs GPU specific optimization. For supporting GPU-
based checkpointing, we extend our own NVMCheckpoint
library [2] for CPUs to support fault tolerance for GPU-CPU-
based application using NVM as a memory device.
Emulating NVM. Next generation NVMs like PCM are not
currently available, and hence need to be emulated. To emulate
NVM, we use one of the DRAM sockets in a dual socket ma-
chine. We use our NVM user and kernel manager designed for
checkpoints from our prior work. Briefly, user-level manager
provides heap-based interfaces by using a persistent allocator
and manages application chunk information. The persistent
user-level allocator is extended from the scalable JEMalloc
allocator. The allocator is responsible for interacting with the
NVM kernel manager using a virtual memory-based mmap()
interface. The kernel manager is responsible for managing all
NVM pages in a socket, keeping track of pages allocated by
an application and recovering the pages across restarts. The
kernel internally maintains process level persistence metadata
in a red-black tree loaded into kernel after restart/recovery.
Our kernel design does not use the current filesystem imple-
mentation. The kernel implementation provides session level
persistence by locking pages to avoid pages getting reclaimed
after a process exists, and for restarts across failures, both user
and kernel structures are stored to a SSD. We next describe the
GPU checkpoint interface and implementation details. More
details about NVM library can be found in [2] and [17].
GPU checkpoint interfaces. Table I shows the set of
interfaces for GPU specific checkpoints. Applications are
modified to use chk CudaAlloc for checkpointing device
chunks that are needed when restarting from failure. A vari-
ation of our implementation supports interposing all current
CUDA allocation methods without requiring to use custom
allocation methods, at the cost of checkpointing all GPU
allocated variables that may not be used for restart. Each
allocation method uses an additional ‘varname’ parameter for
naming and identifying the chunk during failure recovery.
The library creates and performs bookkeeping of all such
chunk structures. Applications use the chckpt all() interface
that requires no arguments as a hint to begin a checkpoint.

Benchmark Chekpt
Size(MB)

Num
Chunks

Pre-Copy
Chunks

Unmodified
chunks

BarnesHut 1096.02 14 4 1
Rodinia/particle fil-
ter

903.04 13 4 5

Rodinia/SRAD 896.112 12 2 6

TABLE II
BENCHMARK CHARACTERISTICS

The underlying checkpoint library identifies all checkpointing
chunks, copies them from GPU to CPU, and then from CPU
to NV storage. The chckpt validate chksm() interface starts
a background checksum validation thread and chckpt hint()
interface provides support for pre-copy (requires developer-
provided hints of variables that can be pre-copied).

V. EVALUATION

The overall goals of our evaluations are to understand
the benefits and implications of various GPU checkpointing
optimizations that we discussed previously. We use a mix of
different standard GPU benchmarks and evaluate them to

1) Understand the impact of checkpointing in application
performance and analyze the end-end checkpoint band-
width constraints.

2) Discuss benefits of our pre-copy and redundant data
elimination techniques.

3) What-if-analysis: We discuss the implications of our
optimizations when NVM bandwidth is the same as the
GPU to host data movement bandwidth.

Experimental setup and applications. All the experiments
were conducted on a cluster with TeslaM2090 ”Fermi” GPU
cards. The peak GDRAM-DRAM bandwidth is 6-7 GB/sec
when measured using the CUDA benchmarks. The experi-
ments use one node, each consisting of 23 2.8 GHz Intel Xeon
cores, 48 GB of DRAM memory. We model our experiments
using a NVMs bandwidth of 2 GB/sec. We use the LANL
memory copy benchmark and add corresponding delays to
model NVM bandwidth for checkpoints (delays in copying
checkpoint data from GDRAM to NVM). We use three
benchmark applications to evaluate the proposed mechanism.
The applications were consciously selected from different
benchmark suites because our optimizations like data pre-copy
and redundant data elimination are application centric. The
application runtime and checkpoint data size is almost similar
as summarized in Table II.
End-End checkpoint performance. First, we evaluate the
end to end checkpoint performance. We use all three applica-
tion described earlier. All benchmarks are compared against
the baseline no-checkpoint case. As it can be seen in Figure 5,
overall our pre-copy and checksum methods perform well.

As indicated in Table II, for SRAD almost half of the
chunks do not get modified at all across checkpoints. These
are mostly read only chunks which include chunks used as
input. While the pre-copy (PCP) mechanism performs better
than the no pre-copy case (No PCP), the checksum method
actively detects unmodified chunks with prediction and avoids
checkpointing in addition to the PCP. This leads to a direct
reduction of checkpoint time. To verify, we keep the frequency
of checkpoints constant (approx. 15 sec) and increase the
checkpoint size per interval. Increasing data size increases the

742

��

���

���

���

���

���

	��

��

���� ������������� ����������

�
��

��
��

��
���

��
���

��
 �

��
!� �"�� #���"��

"$��%���� #���$��%&������

Fig. 5. Checkpoint end-end Performance Fig. 6. What-if-analysis: GDRAM- DRAM performance

0

5

10

15

20

256 512 1024

R
U

N
T

IM
E

 IN
C

R
E

A
SE

(%
)

R
E

L
A

T
IV

E
 T

O
 N

O

C
H

E
C

K
PO

IN
T

CHECKPOINT SIZE(MB)

PCP NO PCP Checksum

Fig. 7. Particle filter-checkpoint size vs. runtime

checksum gains by avoiding checkpoints for redundant chunks
and hence checkpoint overhead is less than 5%. Overall,
SRAD showed more than 60% benefits. We believe, with bi-
nary instrumentation, we can further reduce the checksum cost.
Similar benefits of checksum were observed for the particle
filter application. Just using pre-copy provided only a small
benefit. Figure 7 compares the gains of checksum computation
for different data sizes. For data size 256MB and 512MB,
both PCP and checksum provided relatively same benefits over
no pre-copy, whereas for larger data size, checksum provided
close to 12% reduction in checkpoint overhead. While in this
work we analyze a single node checkpoint performance, the
impact of such optimizations can be substantial in a large scale
experiment running across several nodes for a coordinated
checkpoint. Our future work would focus on understanding the
implications in a larger scale. The last benchmark ‘BarnesHut’
shows that, while the pre-copy approach performs well, the
checksum approach performs poorly and provides almost no
benefits. For BarnesHut (see Table II), almost all checkpoint
variables change across every checkpoint interval, whereas
chunks which can be pre-copied are relatively high. Using
a pre-copy + checksum increased the overall overhead, in
part due to the synchronization operations on accesses to
shared memory between the main application thread and
the checksum thread. The cost of such synchronization is
higher compared to the actual checksum benefits, and leads
to performance degradation.
What-if-Analysis: GDRAM-DRAM checkpoint perfor-
mance. Figure 6 evaluates the performance of our opti-
mizations if NVM and DRAM bandwidths are same (6-
7 GB/sec). We modify the checksum mechanism such that,
only for the first few iterations, checksum of variables is
calculated. We assume a static application behavior across
checkpoint intervals and stop checkpointing if the variables
are redundant. As seen in the figure, using ‘pre-copy’ only
approach is not always beneficial for our scale as checkpoint
size is comparatively lesser compared to the peak bandwidth
(less than 10%). When the checkpoint size is larger than the
available bandwidth, pre-copy would perform better. When
using pre-copy with checksum, the performance improves for
the SRAD (around 5x), BarnesHut (1.5x), and in the case of
the particle filter, there is not much benefit.

VI. CONCLUSIONS AND FUTURE WORK

In this work we discuss mainly reducing the end-end
bandwidth limitation of GPU checkpoint and use of persistent
memory-specific optimizations to improve such performance.
While our techniques show promising benefits for the bench-
mark applications, we are yet to evaluate our methods for
a large scale applications like LAMMPS to understand the
real benefits and implications. Further, we would like to

study the impact of our techniques for MPI-based CUDA
applications and multi-GPU applications, where kernel mi-
grations are common. With a dynamic GPU instrumentation
framework [18], [19], we could characterize the entire GPU
kernel behavior and detect precisely the data that has been
modified by the kernel, applying our pre-copy and redundant
data elimination techniques on top of such an infrastructure.
We plan to investigate this further next.

ACKNOWLEDGMENT

This research is supported in part by an Intel award for
research on non-volatile memory and by the DOE Exact
Center for Exascale Simulation.

REFERENCES

[1] “PIConGPU: Many-GPGPU Particle-in-Cell Code,” picongpu.hzdr.de/.
[2] S. Kannan, A. Gavrilovska, K. Schwan, and D. Milojicic, “Optimizing

checkpoints using nvm as virtual memory,” ser. IPDPS ’13.
[3] J. Duell, “The design and implementation of berkeley labs linux check-

point/restart,” Tech. Rep., 2003.
[4] R. Gioiosa, J. C. Sancho, S. Jiang, F. Petrini, and K. Davis, “Trans-

parent, incremental checkpointing at kernel level: a foundation for fault
tolerance for parallel computers,” in SC ’05.

[5] A. Moody, G. Bronevetsky, K. Mohror, and B. R. d. Supinski, “De-
sign, modeling, and evaluation of a scalable multi-level checkpointing
system,” ser. SC ’10.

[6] K. B. Ferreira, R. Riesen, R. Brighwell, P. Bridges, and D. Arnold,
“Libhashckpt: Hash-based incremental checkpointing using gpu’s,” ser.
EuroMPI’11.

[7] “Lammps benchmark,” http://lammps.sandia.gov/.
[8] X. Dong, Y. Xie, N. Muralimanohar, and N. P. Jouppi, “Hybrid

checkpointing using emerging nonvolatile memories for future exascale
systems,” ACM Trans. Archit. Code Optim.

[9] X. Xu, Y. Lin, T. Tang, and Y. Lin, “Hial-ckpt: A hierarchical
application-level checkpointing for cpu-gpu systems,” in ICCSE ’10.

[10] S. Laosooksathit, N. Naksinehaboon, and C. Leangsuksan, “Two-level
checkpoint/restart modeling for gpgpu,” ser. AICCSA ’11.

[11] H. Takizawa, K. Sato, K. Komatsu, and H. Kobayashi, “Checuda: A
checkpoint/restart tool for cuda applications,” ser. PDCAT ’09.

[12] L. Solano-Quinde, B. Bode, and A. Somani, “Coarse grain computation-
communication overlap for efficient application-level checkpointing for
gpus,” ser. EIT ’10.

[13] L. Bautista-Gomez, S. Tsuboi, D. Komatitsch, F. Cappello,
N. Maruyama, and S. Matsuoka, “Fti: high performance fault
tolerance interface for hybrid systems,” ser. SC ’11.

[14] S. Agarwal, R. Garg, M. S. Gupta, and J. E. Moreira, “Adaptive
incremental checkpointing for massively parallel systems,” ser. ICS ’04.

[15] X. Dong, N. Muralimanohar, N. Jouppi, R. Kaufmann, and Y. Xie,
“Leveraging 3d pcram technologies to reduce checkpoint overhead for
future exascale systems,” ser. SC ’09.

[16] D. Li, J. S. Vetter, G. Marin, C. McCurdy, C. Cira, Z. Liu, and W. Yu,
“Identifying opportunities for byte-addressable non-volatile memory in
extreme-scale scientic applications,” ser. IPDPS ’12.

[17] S. Kannan, A. Gavrilovska, and K. Schwan, “Reducing the cost of
persistence for nonvolatile heaps in end user devices,” ser. HPCA ’14.

[18] N. Farooqui, A. Kerr, G. Diamos, S. Yalamanchili, and K. Schwan,
“A framework for dynamically instrumenting gpu compute applications
within gpu ocelot,” ser. GPGPU-4, 2011.

[19] Farooqui, Naila, “Lynx Library,” https://code.google.com/p/gpulynx/.

743

