
Flexpath: Type-Based Publish/Subscribe System for Large-scale Science Analytics

Jai Dayal, Drew Bratcher,
Greg Eisenhauer, Karsten Schwan,

Matthew Wolf, Xuechen Zhang
Georgia Institute of Technology

Atlanta, GA
{jdayal3, dbratcher}@gatech.edu

{eisen, karsten.schwan, mwolf, xczhang}@cc.gatech.edu

Hasan Abbasi, Scott Klasky,
Norbert Podhorszki

Oak Ridge National Labs
Oak Ridge, TN

{habbasi, klasky, pnorbert}@ornl.gov

Abstract—As high-end systems move toward exascale sizes,
a new model of scientific inquiry being developed is one in
which online data analytics run concurrently with the high
end simulations producing data outputs. Goals are to gain
rapid insights into the ongoing scientific processes, assess their
scientific validity, and/or initiate corrective or supplementary
actions by launching additional computations when needed.
The Flexpath system presented in this paper addresses the
fundamental problem of how to structure and efficiently
implement the communications between high end simulations
and concurrently running online data analytics, the latter
comprised of componentized dynamic services and service
pipelines.

Using a type-based publish/subscribe approach, Flexpath
encourages diversity by permitting analytics services to differ
in their computational and scaling characteristics and even
in their internal execution models. Flexpath uses direct and
MxN connections between interacting services to reduce data
movements, to allow for runtime connectivity changes to
accommodate component arrivals/departures, and to support
the multiple underlying communication protocols used for
analytics workflows in which simulation outputs are processed
by analytics services residing on the same nodes where they
are generated, on the same machine, and/or on attached or
remote analytics engines. This paper describes the design and
implementation of Flexpath, and evaluates it with two widely
used scientific applications and their associated data analytics
methods.

Keywords-Publish/Subscribe, Data Staging, Data Analytics,
in-Situ, Scalable I/O, Code Coupling

I. INTRODUCTION

The push towards exascale is causing researchers to re-
think the way scientific applications and systems will operate
and interact. The consensus is that at such large scales,
applications can no longer be structured as single bulk-
synchronous codes, but will instead be comprised of sets of
heterogeneous parallel components that interact via complex
runtime data exchanges [1], [2]. Our research is concerned
with one specific class of such applications, akin to a “Com-
putational Wet Lab”, in which large-scale parallel codes
simulating some scientific process are the core engines driv-
ing multiple, concurrently running, dynamically organized
sets of analysis and data processing codes that inspect and

evaluate simulation outputs. Typical online analytics tasks
performed by these codes are to visualize output data [3],
[4], prepare data for efficient storage and retrieval [5], [6],
ascertain the simulation’s validity, and/or take corrective
actions to change the simulation’s execution [7].

Important for the emerging online analytics model for
exascale applications is the efficient and flexible data ex-
change between heterogeneous parallel codes. For example,
in the S3D combustion model code [8], the simulation’s raw
output data is fed into sets of services structured as analytics
workflows. Such services may run on the same nodes as
those used by the simulation, on staging areas located on the
same machine, on attached analytics engines, or at remote
locations as part of enabling multi-institution collaborations.

In this simulation/analysis model for scientific investiga-
tion, rapid inquiries into the ongoing scientific processes
being simulated are a key requirement. As such, analytics
services may need to adapt to dynamic simulation behavior
at runtime, an example being the simulation’s use of runtime
mesh refinement which gives rise to changes in the service’s
input & output volumes and patterns. They may also need to
react to runtime changes in science user needs, as when new
analytics are launched in response to interesting scientific
events. Further, with scientists routinely using a plethora of
useful analytics and visualization tools and systems [9], [4],
the analytics service environment may reflect highly diverse
implementations and requirements, including various models
of parallelism, different algorithmic constructs like domain
decompositions or octrees, and as indicated above, may
run across several types of hardware at multiple physical
locations.

This paper presents Flexpath, a type-based pub-
lish/subscribe infrastructure for coupling high-end scientific
applications with their online analytics services. Flexpath’s
pub/sub approach makes possible runtime configurability,
scalability, and also fault tolerance, as the pub/sub abstrac-
tion allows for the decoupling of diverse analytics compo-
nents, permits multiple subscribers or publishers to share a
single data stream, and suppresses communications for cases
in which there are no subscribers to certain data streams

(e.g., those not of current interest). This is particularly
well suited for the “Computational Wet Lab” approach, as
the core simulation may therefore be structured to make
available a substantial array of internal data, knowing that
only those parts that are needed at runtime will actually
be exported. These properties contrast with the typical
assumptions made by communication infrastructures like
MPI, where the domain of executing processes is initialized
at launch and cannot grow or shrink for the remainder of
the execution.

With Flexpath, one can construct and dynamically manage
or change the data processing pipelines or workflows needed
for runtime analysis of the large volumes of this output data
in ways that meet the following four design requirements of
these sorts of applications: (1) decouple analytics services
from simulation codes, (2) maintain levels of performance
similar to those obtained by analytics routines statically
embedded with simulations, (3) permit those pipelines to
cross node and/or machine boundaries, and (4) support
the creation of higher level methods for managing these
pipelines. Sample management constructs built in our own
previous work [10], for example, have balanced pipeline op-
erations to ensure QoS and have implemented transactional
constructs with the goal of providing ACID properties for
select online analytics [11], [12].

Flexpath’s pub/sub communication mechanism, key
to meeting design objective (1), obtains flexibility for
component-component communications, without the perfor-
mance penalties incurred by traditional broker-based pub/sub
infrastructures. This technical contribution is achieved by
using direct connections between interacting components,
including the scatter-gather or MxN communications needed
across different communicating internally parallelized ana-
lytics components. This high performance implementation
for such peer-to-peer techniques utilizes a subscription im-
plementation, allowing readers to specify derived versions of
messages, e.g., to receive only those slices of data objects
they require, as well as registering dynamic transforma-
tions of typed objects when there are mismatches between
publishers and subscribers, e.g. row to column order array
conversions.

With regards to the need to maintain performance in cross-
platform environments (design objectives 2 and 3), Flexpath
has been built to leverage multiple underlying communi-
cation protocols, ranging from a shared memory protocol
employed for on-node communications, to the RDMA-based
protocols existing on high end machines, to the TCP/IP
protocols required for linking remote collaborators. As is
described in Section IV, much of this comes from inheriting
a multi-modal connection management system through the
EVPath framework. Finally, with regards to design object
(4)’s concerns for management, Flexpath’s approach allows
for it to export monitoring data and management ’hooks’
with which higher level management methods can be real-

ized. As will be seen later, we utilize some simple workflow-
level management schemas in this work, but future work will
extend the complexity and robustness of this feature of the
system.

Conceptually, Flexpath’s development builds on extensive
prior work on efficient parallel I/O pipelines, including data
staging methods for running analytics and visualization [13],
[5], [14], [15], data streaming and the online QoS control
of such data streams [16], [17], [11], the aggressive use
of source-based data reduction and filtering [6], [5], and
convenient ways to carry out remote data visualization [18],
[9], [4]. For high end machines, challenges include dealing
with network congestion [13], providing data reliability
when operating at scale [12], making data ’right’ for use
by successive analytics codes without unnecessary data
movement [19], [5], and dealing with application dynamics,
as when codes are dynamically activated or de-activated.
Such dynamics, in fact, have given rise to interesting meth-
ods used by modern data visualization systems like VisIt
contracts [20].

Driven by such prior work, Flexpath is designed as a
communication substrate that does not proscribe specific
management methods. Instead, it makes possible the effi-
cient realization of alternative communication scheduling
techniques [13] and/or higher level methods for managing
entire analytics workflows [10]. In contrast to web-based or
commercial data streaming infrastructures [17], [21], [22], it
does not constrain end users in how to write their analytics
routines, so that they can leverage the rich tools already
existing for these purposes, like R or MatLab. Finally,
leveraging the ADIOS I/O APIs already in common use on
petascale machines [23], Flexpath’s implementation as an
ADIOS ’transport method’ allows it to adopt and adapt many
off-line analytics pipelines that were originally structured as
sets of independently programmable and deployable analyt-
ics services using ADIOS as the interface of choice [23].

Flexpath is deployed for use across a range of high
end machines, including ORNL’s Titan machine, Infiniband
clusters, and commodity scientific computing engines. This
paper experimentally evaluates its technical elements and ap-
proach with two representative applications with significant
scientific user communities, LAMMPS [24] and GTS [25],
coupled with their associated data analytics service flows.
For this paper, experiments are run on Oak Ridge National
Lab’s Sith machine and on smaller-scale Linux clusters
available at our own institution.

The remainder of this paper is organized as follows.
Section II describes two scientific applications guiding our
research. Section III outlines type-based publish/subscribe
and describes how such abstractions have to be augmented
to be made suitable for high end applications. Section
IV describes the design and implementation of Flexpath.
Section V presents experimental results, and Section VI
overviews related work. Conclusions and future work appear

Table I
CHARACTERISTICS OF SMARTPOINTER ANALYSIS ACTIONS

Complexity Data Model Stateful
Helper O(n) Array No
Bonds O(n2) Array, Parallel No
CSym O(n) Complex Yes
CNA O(n3) Array No

in Section VII.

II. APPLICATION DRIVERS

As an exemplar of the type of analytically-rich scientific
pipelines mentioned above, we offer a scenario based on
understanding crack genesis and propagation in advanced
materials. At its core, this work uses LAMMPS (Large
Scale Atomic/Molecular Massively Parallel Simulator) [24],
which is a molecular dynamics simulation workhorse used
across a number of scientific domains, including materials
science, biology, and physics. It is written with MPI and
performs force and energy calculations on discrete atomic
particles. After a number of user-defined epochs, it outputs
the atomistic simulation data (positions, atom types, etc.),
with the size of this data ranging fom megabytes to terabytes
depending on the science being conducted.

LAMMPS

LAMMPS
Helper

Bonds

CNA

CSYM

Storage

Figure 1. LAMMPS and SmartPointer Analysis Pipeline

SmartPointer is a representative analytics pipeline inter-
preting LAMMPS output data to detect and then scientifi-
cally explore plastic deformation and crack genesis. In such
scenarios, the material being simulated is steadily stressed
until it first starts to break. The scientific question being
addressed by this research is how to understand the geometry
of the region around that initial break, particularly when it
is a multi-crystalline, nano-structured material. This means
that the purpose of the molecular dynamics simulation is to
bring the data set to some self-consistent, interesting state, at
which point substantial additional analytics and characteriza-
tion need to take place. The SmartPointer analytics toolkit
implements these functions to determine where and when
plastic deformation occurs and to generate relevant infor-
mation as the material is cracked. Table I summarizes the
computational characteristics of the individual SmartPointer
components, and the list below explains each in greater
detail.

• Lammps Helper: serves as an aggregator and filter of
the raw LAMMPS data.

• Bonds: subscribes to aggregated data from Lammps
helper at each time-step, and performs an all-nearest
neighbor calculation to determine which atoms are
bonded together in order to publish a bond-pair array
as its output.

• Csym: the central symmetry analysis routine operates
on an array of bond-pairs from bonds, and also a bond
adjacency list (a graph structure) to determine if there
is a deformation in the material. This code maintains
the initial bonds adjacency state for the duration of its
run.

• CNA: common neighbor analysis executes whenever
CSYM determines that a deformation in the material
has occurred. CNA is compute-intensive and is exe-
cuted on the bond pairs array to perform a structural
characterization on the data, to determine the conditions
under which the crack occurred.

As an alternative application example, we also present
GTS. GTS is a plasma fusion simulation that solves
the gyrokinetic equation with an implementation that
exploits coarse grained process level parallelism using
MPI, and more fine-grained thread-level parallelism using
OpenMP [25]. This particle-in-cell code has different out-
put frequencies for both particles and mesh-level statistics.
In order to examine the dynamics involved, in particular
dangerous transient effects that might damage a real reactor
vessel, it is useful to dynamically evaluate and characterize
particular trends on the inner and outer edges of the plasma.
Unlike the LAMMPS case, these transients are not as algo-
rithmically identifiable, so secondary analysis methods are
used to infer their existence, and then, much more detailed
inspection involving direct interaction with the physicists
is used to further the investigation. The GTS analytics
pipeline used in this paper computes parallel histograms of
multiple grid-carried variables, and runs parallel-coordinate
visualizations to provide suitable data to those physicists.

The LAMMPS and GTS analytics workflows have some
important shared characteristics. In both examples, analytics
codes are run as independent services, each simply executing
its functions on the data that is available. The operation of
the individual analysis routines are not affected by each other
and generally, the codes are unaware of the details of how
or when the other codes are run. This results in analytics
workflows best described as sets of analytics services loosely
coupled in terms of space, time, and synchronization.

III. TYPE-BASED PUBLISH SUBSCRIBE FOR HPC
ENVIRONMENTS

Type-based publish/subscribe [26] is a pub/sub paradigm
in which producers publish objects classified by type to
a communication substrate, and consumers subscribe to
them by specifying the types of objects in which they
are interested. Here, type reflects both the structure of the
published data as well as metadata extensions that can be
determined at runtime. This distinction, along with other
technical contributions, is part of what allows Flexpath
to adopt a high performance direct-connect, rather than
brokered, infrastructure.

While Flexpath uses a type-based pub/sub model, end
users are not required to change their ADIOS codes or

applications to adopt this new model. Instead, the Flexpath
implementation exploits the model’s several similarities with
the standard file I/O model already known to science users.
In the file I/O model, science applications exchange data by
using a shared filesystem as the data exchange medium [27],
and workflows are constructed through the use of interme-
diate files stored on disk. As a familiar scientific scenario,
consider the following: at each output epoch the parallel
writers open a file, encode their data in the proper metadata-
rich serialization format, like NetCDF [28] or HDF5 [29],
populate the write buffers, and finally, flush them to disk.
Similarly, for a given read epoch the (possibly parallel)
readers open the file, read metadata about the objects present
in the file, create the appropriate buffers, perform the reads,
and then seek ahead to the next block of data, if available.
Additional attractive elements of the file-based approach
include the ability to perform “seeks” to retrieve fine-grained
slices of the available data, data durability and persistence
guarantees.

A detraction from this model is the synchronous nature
of file-based I/O and its poor performance at large scales.
Particularly, if there is a complex trade-off between number
of files, number of writers, and the layout of data within
those files to be most scientifically useful, the attempt to op-
timize any one file system parameter can yield sub-optimal
results for the other. In the dynamic scientific investigations
targeted by this work, a mis-predicted optimization could
have profound impact on the viability of the runtime analysis
if it were to use a traditional filesystem-based approach.
A key reason for introducing our asynchronous, type-based
pub/sub has been to avoid this disk bottleneck when linking
simulations with dynamic sets of analytics services[5], [14],
[13].

The properties of a type-based pub/sub system, although
superficially quite different from file I/O, map relatively well
to the subset of such general functions that are offered by
high performance I/O libraries such as HDF5 or ADIOS.
For example, file names serve as the naming convention for
establishing a pub/sub “channel” between coupled applica-
tions, so that writers and readers can be logically mapped
between publishers and subscribers to a shared data set. A
key realization about the high performance I/O abstraction is
that, since data is already laid out for the I/O system utilizing
many higher-level concepts of data structure (arrays, slabs,
meshes, etc.), a seek is not an arbitrary binary offset within
the file. Instead, it maps quite well to metadata subscriptions
or type-based derivations within the scope of type-based
pub/sub. For example, a seek to a particular slice of a
global array can also be interpreted by the pub/sub as a
parameterization of the peer-to-peer subscription parameters.
This structural, rather than byte-level, addressing of data
in the high performance space is key to aligning the two
paradigms.

Beyond this mapping of file I/O to equivalent pub/sub

actions, there are additional properties of the online ana-
lytics workflows targeted by Flexpath that make them well
suited for the type-based pub/sub paradigm. The input and
output types of each component in the workflow are well
defined, giving rise to clean mappings to equivalent pub/sub
type descriptions. Additionally, since the components of the
workflow operate independently of each other, this favors an
asynchronous communication model not subject to the issues
with tightly synchronized data exchanges in which senders
block when downstream receivers are still processing the
previous interval of data. This also supports the original
design objective of being able to handle a heterogeneous
computational environment. Finally, for analytics compo-
nents that can change during the course of the run, key
constituents of the types of workflows we aim to address,
this amounts to dynamic changes in the data flow. Our
pub/sub offers a model that allows such dynamics while not
having to make the individual components aware of such
run-time complexities.

While conceptually attractive, the efficient implementa-
tion of type-based pub/sub for high end applications and
platforms poses significant challenges. To obtain high perfor-
mance for large data volumes, we cannot use overlay routing
techniques and/or move data to third-party brokers, as done
in other traditional pub/sub implementations [30], [31], [32].
Second, unlike traditional type-based pub/sub, a single data
object represented by a type is a collection of messages
matching this type obtained from some large number of
sources producing these messages, i.e., each process in the
parallel application produces a portion of a global array as
well as scalar variables that describe both global knowledge
and the process’s local view of the global array. Thus, the
definition of type has to be extended to include notions of
both local and global metadata parameters. Third, in the
common MxN data exchanges that occur among science
codes, a subscriber only wants to receive certain slices of
the objects or in fact, objects transformed from one type to
another. So, in addition to specifying types, subscribers also
need to specifiy derivations on types. As a final complica-
tion, a type-based pub/sub infrastructure must have ways of
dealing with type augmentations at runtime in order to be
useful for adaptive codes like S3D.

Naturally, there are also machine-specific challenges to
an efficient implementation of pub/sub on large-scale su-
percomputers. Structuring a solution which can both effi-
ciently utilize highly specialized networking hardware and
protocols, such as Infiniband and Cray’s Gemini intercon-
nect and simultaneously operate across multiple networking
technologies, e.g. TCP/IP, in order to extend workflows
across multiple machines and geographies, requires great
care. There are issues of placement, throughput matching,
and even security that must be addressed while maintaining
both high performance and the simple pub/sub abstraction.

In summary, scientific simulations with complex online

Publisher

Publisher

Publisher
Message Broker

Subscriber

Subscriber

Subscriber

publish

publish

publish

subscribe

Overlay

Event Storage

Subscription
Matching

Notification

Notification

Metadata

Connection
Mgmt

(a) Traditional Pub/Sub

Message Broker

Publisher

pu
bl

is
h

Event Storage
Connection Mgmt

Metadata

Subscriber

Message Broker

Publisher

pu
bl

is
h

Event Storage
Connection Mgmt

Metadata

Subscriber

Message Coordinator

Publisher

pu
bl

is
h

Event Storage

Connection Mgmt

Metadata
Message Broker

S
ub

sc
rib

e

Subscription
Matching

Connection Mgmt
Metadata

N
otify

Message Broker

S
ub

sc
rib

e

Subscription
Matching

Connection Mgmt
Metadata

N
otify

Message Broker

Subscriber

S
ub

sc
rib

e

Subscription
Matching

Connection Mgmt
Metadata

N
otify

Message Coordinator

Subscriber

S
ub

sc
rib

e
Subscription

Matching
Connection Mgmt

Metadata

N
otify

Events, subscriptions, metadata

(b) Flexpath Pub/Sub

Figure 2. Traditional model of publish/subscribe vs. Flexpath model of
publish/subscribe allowing for fine-grained data exchanges across parallel
applications.

analytics workflows can benefit from the pub/sub paradigm,
but given the non-trivial data exchange and I/O character-
istics of these applications, and the nature of the systems
on which they run, type-based publish/subscribe must be
rethought to enable data exchanges at scale. Connection
management, type derivations, and subscription management
all must be re-addressed. We next explain the Flexpath archi-
tecture and implementation as it addresses these challenges.

IV. DESIGN AND IMPLEMENTATION

Figure 2 depicts the conceptual design of Flexpath and
contrasts it with the standard broker-based pub/sub model.
The key design component allowing us to break away from
the traditional broker model is the use of message coordina-
tors local to each participant. In Flexpath, direct connections
are established between coordinators on opposing sides;
when joining a channel, a subscriber selects a publisher
peer coordinator it uses to retrieve publisher metadata. This
metadata is used in conjunction with subscriber subscriptions
to establish connections with publishers that own the re-
quested data. Additionally, control messages are sent across
connected coordinators to perform coordinated control op-
erations like the eviction of expired data from the local data
stores. We next describe some of the background needed for
understanding the implementation of this functionality.

A. Background Technologies
1) EVPath Overview: The Flexpath messaging infras-

tructure is built on the EVPath [16] event-based transport
middleware. EVPath supports the construction of active
messaging overlay networks. User-defined data filtering and
transformation functions reside in lightweight “stones” that
serve as processing points in the overlay, and stones are
linked to form overlay “paths”, where the processes hosting

these stones may reside on the same physical machine, on
cluster nodes, or even on machines at different geographical
locations. The filtering and transformation functions run
by stones are implemented by registered call-back handlers
written in C and statically associated with stones, or as inline
functions deployed at runtime generated with the CoD (C-
on-Demand) language. The types of EVPath stones used in
the Flexpath implementation are the following:

• Terminal Stone: runs an application-registered call-back
handler associated with an event type; the handler is
invoked upon receipt of such an event.

• Multi-Queue Stone: operates over a collection of typed
events, and allows users to implement policies like a
tumbling window policy, or perform event transforma-
tions that span multiple event types.

• Bridge Stone: is used for network transmission, for
communication with stones in a remote address space.

The additional stone types present in EVPath are described
in [16].

Flexpath adopts from EVPath its methods for data se-
rialization, termed Fast Flexible Serialization (FFS) [33],
which means that Flexpath events are comprised of typed
data elements, with types seen by all of the stones (and
functions) operating on those events. The basic types sup-
ported are similar to those present in the C language, but
with FFS, those types can be the building block for event
data comprised of complex graph structures. FFS serial-
ization creates self-describing events, meaning that each
event carries its typed data as well as sufficient metadata
to identify those types. We note that functions coded with
CoD manipulating FFS encoded events can be generated
at runtime and dynamically deployed to stones, in contrast
with handlers that are compiled and deployed statically.
Finally, to operate across several diverse communication
protocols, Flexpath uses EVPath’s networking abstraction,
termed Connection Manager(CM), which currently supports
as lower level protocols TCP/IP sockets, and via Sandia’s
NNTI [34], also high performance protocols like Infiniband,
Cray’s Gemini, and the Bluegene interconnect.

2) ADIOS Interface: The Adaptable IO System (ADIOS)
is an I/O componentization library that exposes file-like read
and write interfaces to applications, with underlying I/O
methods including disk based methods like POSIX and MPI-
IO, and “staging” methods like Datatap[13], Dataspaces[14],
and also Flexpath. With ADIOS, end users can simply
’switch’ transports, without modifying their codes, using an
external XML document identifying those transports as well
as other I/O characteristics, like the variables to be written,
their array dimensions & offsets, etc. We have chosen
ADIOS to be the interface into Flexpath for two reasons: 1)
For ease of use by the large number of existing applications
that use the ADIOS interfaces, and 2) as describe in section
III, there is a natural translation from ADIOS file-based
I/O interfaces and type descriptions to Flexpath’s pub/sub

approach.

B. Implementation

Publisher

Application

ADIOS API

Flexpath Publisher

Buffer
Mgmt

Metadata
Mgmt

Subscription
Spec.

Message Coordinator

EVPath

NNTI TCP/IP ENET

Connection
Mgmt

Shared
Mem

Figure 3. Software Architecture of Flexpath Publishers

Figure 3 depicts the software architecture of Flexpath
from the publisher’s perspective. The subscriber’s interface
is similar, except that it is layered beneath the ADIOS read
interface.

Type Representation: The publisher side of Flexpath
obtains type information about data from the ADIOS data
descriptor, generated by parsing the XML document during
the adios open call. This information is converted into a FFS
format header uniquely identified by a “cookie” transmitted
along with the data. Upon the arrival of an event, if a
receiver has not yet seen this cookie, the receiver issues a
fetch request to the sender to obtain the FFS descriptor. This
scheme avoids the redundant transmission of FFS metadata.

Publishing Data: Publishers submit their data in Flex-
path through the adios write call, which is called for each
variable to be written. Flexpath copies the data into the
appropriate location in the FFS encoded buffer. This extra
copy is not inherent to the pub/sub model, but is performed
to satisfy the safety requirement of the ADIOS interface,
which allows user codes to manage their own buffers. At
the end of the output epoch, publishers perform a publish
operation, available through the adios close call, which sub-
mits the FFS encoded data to the local message coordinator.
Additionally, on the publish operation, if there are any global
arrays, we distribute each publisher’s array offset metadata
to all other publishers, so that the subscriber can ask its
peer publisher coordinator for this information directly. This
metadata allows us to extend the traditional definition of
types to include local pieces of a larger global object.

Subscriptions: Subscriptions are realized in three steps.
First, the subscriber informs its local message coordinator
about what variables and slices it needs. The message
coordinator then fetches the global offset information for the

given epoch from its peer writer coordinator and uses this
information, if available, to determine from which publishers
data is needed. The subscriber message coordinator will then
send to each of those publisher coordinators a fetch message
requesting the desired variables and slices. The offset meta-
data exchange also serves as our notify abstraction; metadata
is only present for an output epoch if data for this epoch has
been published.

In addition to the array slicing style subscriptions, we
also allow for subscribers to specify type transformations, to
allow publishers and subscribers to resolve type mismatches.
In the example listed in Section II, the CSYM code actually
wants to receive some data in the form of a bonds-adjacency
list, a more complex graph structure, rather than only the
bond-pair integer array published by the Bonds code. With
Flexpath, this is done via transform operators, represented
as CoD code or as a registered transform function. For this
example, the transform function is run on the subscriber side
to avoid having to transmit both sets of data.

Message Coordinators: Message Coordinators are im-
plemented by EVPath stones, CoD code, and with call-
back handlers. On the publisher side, an EVPath multi-
queue stone executes in the same thread as the one handling
network communication, i.e., serving as an entry point for
incoming messages and as the dispatcher for outgoing mes-
sages. To reduce its processing load, messages are forwarded
to a control thread that handles message processing and any
state changes within the Flexpath publishers. Each publisher
message coordinator also maintains a local in-memory data
buffer for storing published data as well as the associated
metadata. It is this local data store, the control thread,
and the communication thread that jointly realize Flexpath’s
asynchronous communication model. Additional functional-
ity in message coordinators maintains reference counts to
understand when data has been successfully received by all
subscribers and perform subsequent data eviction operations,
etc.

The subscriber’s message coordinator is similar, except
that it uses a terminal stone and call back handlers to invoke
necessary state changes, and that received data is copied into
the user’s receive buffer registered through the ADIOS read
interface. Finally, there is additional information about inter-
coordinator connectivity, elided here for brevity.

V. EXPERIMENTAL EVALUATION

Flexpath is evaluated experimentally using the Sith cluster
hosted at Oak Ridge National Labs, and on the Windu and
Jedi clusters hosted at Georgia Tech. The Sith machine is a
40 node cluster and each node is equipped with four 2.3 GHz
8 core AMD Opteron processors and 64 GB of memory. The
system offers QDR Infiniband for Lustre and MPI traffic, and
a 1Gb Ethernet link for communication across MPI domains.

The Windu and Vogue clusters operate as separate Infini-
band domains and the two clusters share a 1Gb Ethernet

Table II
LAMMPS PIPELINE EXPERIMENTAL SETUP.

Data Size LAMMPS Helper Bonds
76 MB 128 1 2
153 MB 256 2 4
305 MB 512 4 8
610 MB 1024 8 16

Table III
DATA SIZES AND CORE COUNTS FOR WEAK SCALING EXPERIMENTS

link for communication between the two. The nodes in both
clusters contain one 2.67Ghz Intel Xeon 12 core processor
and 48Gb ram.

A. Affect on Application Execution Time

This experiment measures the effect on application level
performance when constructing a workflow, using Flex-
path as the data exchange mechanism. We measure time
spent on output operations for each component in the
pipeline and compare Flexpath’s performance with that of
the MPI Aggregate synchronous disk-based method offered
by the ADIOS interface. The MPI Aggregate method is
optimized for parallel Lustre I/O, and discussion on these
optimizations is made available in [23].

We use weak scaling to show how the system behaves
both in terms of larger numbers of participants and larger
data volumes. Table II shows the data sizes LAMMPS
produces at each output epoch, and the number of cores
on which each code is executed. CSYM and CNA are serial
codes that always run with an MPI size of 1, so we exclude
them from the table.

Figure 4 shows the total time each component in the
LAMMPS analytics pipeline spends on performing I/O over
its full execution. The LAMMPS application experiences
a significant decrease in I/O time; when running on 1024
cores, it spends just over 1.3 seconds on I/O when using
Flexpath vs. 117 seconds when using the MPI Aggregate
method. This is directly due to Flexpath’s asynchronous
nature.

Asynchronous operation also engenders reductions in I/O
time for the other components in the pipeline, but the de-
crease is not as drastic, for several reasons: (1) the analytics
components run at smaller MPI sizes than the LAMMPS
application, so for each component process, Flexpath has a
much larger volume of data to process and move; and (2)
the Bonds and CNA components run slower than the others,
so occasionally, there will be blocks in the analytics portion
of the pipeline as the coordinator data stores become full. It
is blocking issues in scenarios like these that motivate the
notion of I/O Containers for managing analytics pipelines
presented in [10].

Figure 5 depicts the overall improvements in runtimes
for the LAMMPS and GTS applications. The decrease in
the time spent on I/O translates to decreased run times.
We note that there is some disparity between the reduced
time spent on I/O and the total reductions seen in run-

(a) LAMMPS

(b) GTS

Figure 5. Total Execution Times for LAMMPS and GTS applications.

times. This is because (i) Flexpath is an active I/O transport,
so it will continue to operate and borrow CPU cycles
during the application’s normal execution; and (ii) with
non-blocking asynchronous I/O, Flexpath data movements
may collide with application level communications, e.g.,
MPI communications. To alleviate these effects, we can
leverage the scheduling techniques described in [13], but in
the experiments shown here, the decrease in I/O overhead
more than compensates for these potential side-effects of
asynchronous, non-blocking I/O.

B. Subscriptions and Metadata Distribution

The graph shown in Figure 6 shows the time it takes for an
idle subscriber to register itself with an existing data channel.
In these experiments, the CNA code sits idle and waits
for an application-level control message from the CSYM
code. After this message is sent, CSYM idles, and CNA
activates and joins the Bonds output channel. The reason
we see a linear increase in registration time here is because
(i) the CNA code is just a serial code that must subscribe
to all data from the Bonds application, and (ii) because
Flexpath uses direct connections, which requires the single
CNA process to establish a connection with each Bonds
publisher. The time listed here also includes the time it takes
for the subscribers to send their initial data fetch requests, as
outlined in Section IV, but these costs are amortized when

(a) LAMMPS (b) Lammps Helper (c) Bonds

Figure 4. Total Time spent on I/O for LAMMPS and components of analytics pipeline. The asynchronous I/O offered by Flexpath drastically reduces
the time an application spends on I/O operations.

using the non-blocking calls the ADIOS read API offers.
The ability to use subscriptions and application level

controls to perform such selective changes in data flow is
an important feature when dealing with such large data
volumes. This is because without such functionality, data
would be delivered to subscribers before they need it and
in addition, when they no longer need it. Considering
the CSYM/CNA example, without this functionality, when
LAMMPS is generating 610 MB of data, that would require
nearly 1.2 GB of data to be transfered each epoch.

Figure 6. The time needed for 1 CNA process to join the Bonds channel.

Figure 7 shows the expected costs for collecting publisher
metadata and the costs expected for the subscribers in
fetching this metadata from its publisher peer coordinator.
This global distribution of the metadata is one feature that
allows us to employ a direct-connect model without using
any external metadata services. Since these costs can poten-
tially be induced after every epoch of data, it is important
to ensure that they are kept low. At 1024 publishers and
8 subscribers, we are spending less than 15 milliseconds
performing these operations. To further reduce these times,
it would be possible to distribute this metadata only when
changes occur.

Considering that we use subscriptions to allow subscribers
to receive fine-grained slices of the published data, the
overhead involved with distributing this metadata is much
smaller than the overhead of possibly moving large volumes
of redundant or unneeded data.

Figure 7. Time spent on collecting and distributing publisher metadata
for one epoch.

C. Application Level Throughput

Figure 8 shows the aggregate data exchange throughput
for the Flexpath system at increasing numbers of publishers
and subscribers. For these experiments, we have run a two
stage pipeline between LAMMPS and Lammps Helper. We
conduct these experiments both on Sith and across the
two Georgia Tech hosted clusters. The graphs show that
in both setups, due to Flexpath’s direct-connect model,
we are able to achieve linear scalability as we increase
the number of publishers and subscribers. This end-to-end
scalability is achieved because of two key design points:
(i) using subscriptions, subscribers are presented with only
the slices data they request, and (ii) the use of direct
connections between publishers and subscribers avoids extra
data movements induced from first moving data to external
brokers. Our measurements for application level throughput
include the round-trip times between a subscriber’s fetch
request to a publisher, the data transfer time, unmarshalling
costs, handler invokations, and copying the data into the user
provided buffers.

VI. RELATED WORK

Scalable pub/sub implementations created outside the
HPC domain tend to consider workloads comprised of
large numbers of small, potentially unrelated, messages.
BlueDove [35] from IBM is an attribute-based pub/sub

(a) SITH

(b) GT

Figure 8. Application Level Throughput on Sith and across Georgia Tech
clusters.

implementation for elastic Cloud-based applications, intend-
ing to use the Cassandra data store. Since it deals with
small messages, it is able to benefit from the routing of
messages to external dispatcher servers that also perform
subscription matching before delivering the messages to
the subscribers. Flexpath differs in its focus on structured,
potentially complex and voluminous data events transmitted
between publishers and subscribers, with its consequent use
of direct connections between both. This is also the case for
[30], [31], which are pub/sub systems that aim to overcome
some of the inefficiencies found with routing messages
and subscriptions through processing overlay networks: pub-
lisher messages are first pushed to content brokers, and
subscriber subscriptions are then routed through the network
to find the correct overlay node that has matching data.

In the HPC space, the work presented in [32] outlines
a content-based pub/sub infrastructure layered on top of
the Dataspaces [14] substrate. The work allows for in-
trospection into the data, and subscribers can register to
receive sub-samples of the events based on avg/min/max
values computed from the data while it is in-flight. Flexpath
differs by (1) using a direct connect model to avoid the
extra data movements involved with publishing data to an
external broker, as in the shared-space abstraction offered

by Dataspaces; and (2) offering a subscription model that
can go beyond standard array-slicing and chunking to allow
publishers and subscribers to produce and consume com-
plex data, including graphs or arrays of complex types; it
also permits codes that may have type-mismatches between
publishers and subscribers to exchange data.

VII. CONCLUSIONS AND FUTURE WORK

This paper presents the design and implementation of
Flexpath, a publish/subscribe system crafted for HPC envi-
ronments. The system gives science end-users the flexibility
needed to construct workflows consisting of codes that differ
in their scaling characteristics, execution models, degrees of
parallelism, communication patterns, and in the types and
structure of data they exchange and operate on. Flexpath uses
a direct connect model, has asynchronous publish and notify
abstractions, and allows for fine-grained subscriptions and
data transformations. It therefore, achieves good scalability
and performance by reducing data movements, as data is
delivered directly to the processes that request it, rather than
first flowing through the external message brokers found in
traditional publish/subscribe systems. Experimental results
validate its scalability and the small overheads achieved with
its direct-connect model. It has been released as a ‘transport’
in the ADIOS IO package distributed by Oak Ridge National
Labs.

Future work for Flexpath is directed towards providing
higher-level management constructs that allow applications
and science end-users to create custom management policies
for their science workflows, to better take advantage of
the dynamics that occur in these complex environments,
i.e., responding to dynamics along the data plane such as
adaptive mesh refinement, or responding to systems level
dynamics like faults, which will become more important as
workflows extend beyond high-end machines and operate
partially on end-user mobile devices or laptops.

REFERENCES

[1] (2013) Exaos/r: Exascale operating sys-
tem and runtime. [Online]. Available:
https://collab.mcs.anl.gov/pages/viewpage.action?pageId=3211285

[2] H. Yu, C. Wang, R. W. Grout, J. H. Chen, and K.-L. Ma,
“In situ visualization for large-scale combustion simulations,”
IEEE Computer Graphics and Applications, vol. 30, no. 3, pp.
45–57, 2010.

[3] (2013) Visit visualization tool. [Online]. Available:
https://wci.llnl.gov/codes/visit/

[4] A. Cedilnik, B. Geveci, K. Moreland, J. P. Ahrens, and
J. M. Favre, “Remote large data visualization in the paraview
framework,” in EGPGV, 2006, pp. 163–170.

[5] F. Zheng, H. Abbasi, C. Docan, J. Lofstead, S. Klasky,
Q. Liu, M. Parashar, N. Podhorszki, K. Schwan, and M. Wolf,
“Predata- preparatory data analytics on peta-scale machines.”

[6] S. Lakshminarasimhan, N. Shah, S. Ethier, S. Klasky,
R. Latham, R. B. Ross, and N. F. Samatova, “Compressing
the incompressible with isabela: In-situ reduction of spatio-
temporal data,” in Euro-Par (1), 2011, pp. 366–379.

[7] J. S. Vetter and K. Schwan, “Techniques for high-performance
computational steering,” IEEE Concurrency, vol. 7, no. 4, pp.
63–74, 1999.

[8] E. R. Hawkes, R. Sankaran, J. C. Sutherland, and
J. H. Chen, “Direct numerical simulation of turbulent
combustion: fundamental insights towards predictive models,”
Journal of Physics: Conference Series, vol. 16, no. 1,
p. 65, 2005. [Online]. Available: http://stacks.iop.org/1742-
6596/16/i=1/a=009

[9] H. Childs, M. A. Duchaineau, and K.-L. Ma, “A scalable,
hybrid scheme for volume rendering massive data sets,” in
EGPGV, A. Heirich, B. Raffin, and L. P. P. dos Santos, Eds.
Eurographics Association, 2006, pp. 153–161.

[10] J. Dayal, J. Cao, G. Eisenhauer, K. Schwan, M. Wolf,
F. Zheng, H. Abbasi, S. Klasky, N. Podhorszki, and J. y Lof-
stead, “I/o containers: Managing the data analytics and vi-
sualization pipelines of high end codes,” in International
Workshop on High Performance Data Intensive Computing,
2013.

[11] M. Wolf, H. Abbasi, B. Collins, D. Spain, and K. Schwan,
“Service augmentation for high end interactive data services,”
in CLUSTER. IEEE, 2005, pp. 1–11.

[12] J. Lofstead, J. Dayal, K. Schwan, and R. Oldfield, “D2t:
Doubly distributed transactions for high performance and
distributed computing,” Cluster Computing: To Appear, 2012.

[13] H. Abbasi, M. Wolf, G. Eisenhauer, S. Klasky, K. Schwan,
and F. Zheng, “Datastager: scalable data staging services for
petascale applications,” Cluster Computing, vol. 13, pp. 277–
290, 2010, 10.1007/s10586-010-0135-6.

[14] C. Docan, M. Parashar, and S. Klasky, “Dataspaces: an in-
teraction and coordination framework for coupled simulation
workflows,” in Proceedings of the 19th ACM International
Symposium on High Performance Distributed Computing, ser.
HPDC ’10. New York, NY, USA: ACM, 2010, pp. 25–36.

[15] M. Hereld, M. E. Papka, and V. Vishwanath, “To-
ward simulation-time data analysis and i/o acceleration on
leadership-class systems,” in IEEE Symposium on Large-
Scale Data Analysis and Visualization, 2011.

[16] G. Eisenhauer, M. Wolf, H. Abbasi, and K. Schwan, “Event-
based systems: opportunities and challenges at exascale,” in
DEBS, 2009.

[17] H. Nasgaard, B. Gedik, M. Komor, and M. P. Mendell, “Ibm
infosphere streams: event processing for a smarter planet,” in
CASCON, P. Martin, A. W. Kark, and D. A. Stewart, Eds.
ACM, 2009, pp. 311–313.

[18] M. Wolf, Z. Cai, W. Huang, and K. Schwan, “Smartpointers:
personalized scientific data portals in your hand,” in SC, 2002,
pp. 1–16.

[19] H. Abbasi, M. Wolf, K. Schwan, G. Eisenhauer, and
A. Hilton, “Xchange: coupling parallel applications in a dy-
namic environment,” in CLUSTER. IEEE Computer Society,
2004, pp. 471–480.

[20] H. Childs, B. Geveci, W. J. Schroeder, J. S. Meredith,
K. Moreland, C. Sewell, T. Kuhlen, and E. W. Bethel,
“Research challenges for visualization software,” IEEE Com-
puter, vol. 46, no. 5, pp. 34–42, 2013.

[21] J. Leibiusky, G. Eisbruch, and D. Simonassi, Getting Started
with Storm - Continuous Streaming Computation with Twit-
ter’s Cluster Technology. O’Reilly, 2012.

[22] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. Mc-
Cauley, M. J. Franklin, S. Shenker, and I. Stoica, “Resilient
distributed datasets: a fault-tolerant abstraction for in-memory

cluster computing,” in Proceedings of the 9th USENIX con-
ference on Networked Systems Design and Implementation,
ser. NSDI’12. Berkeley, CA, USA: USENIX Association,
2012, pp. 2–2.

[23] J. Lofstead, F. Zheng, S. Klasky, and K. Schwan, “Adaptable,
metadata rich io methods for portable high performance io,”
in Parallel Distributed Processing, 2009. IPDPS 2009. IEEE
International Symposium on, may 2009, pp. 1 –10.

[24] S. Plimpton, R. Pollock, and M. Stevens, “Particle-mesh
ewald and rrespa for parallel molecular dynamics simula-
tions,” in PPSC. SIAM, 1997.

[25] W. X. Wang, Z. Lin, W. M. Tang, W. W. Lee, S. Ethier, J. L. V.
Lewandowski, G. Rewoldt, T. S. Hahm, and J. Manickam,
“Gyro-Kinetic simulation of global turbulent transport prop-
erties in tokamak experiments,” Physics of Plasmas, vol. 13,
no. 9, p. 092505, 2006.

[26] P. Eugster, “Type-based publish/subscribe: Concepts and ex-
periences,” ACM Trans. Program. Lang. Syst., vol. 29, no. 1,
2007.

[27] B. Ludäscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger,
M. Jones, E. A. Lee, J. Tao, and Y. Zhao, “Scientific work-
flow management and the kepler system: Research articles,”
Concurr. Comput. : Pract. Exper., vol. 18, pp. 1039–1065,
August 2006.

[28] J. Li, W. keng Liao, A. N. Choudhary, R. B. Ross, R. Thakur,
W. Gropp, R. Latham, A. Siegel, B. Gallagher, and M. Zin-
gale, “Parallel netcdf: A high-performance scientific i/o inter-
face,” in SC. ACM, 2003, p. 39.

[29] S. K. Sahoo and G. Agrawal, “Supporting xml based high-
level abstractions on hdf5 datasets: A case study in automatic
data virtualization,” in LCPC, ser. Lecture Notes in Computer
Science, R. Eigenmann, Z. Li, and S. P. Midkiff, Eds., vol.
3602. Springer, 2004, pp. 299–318.

[30] A. Carzaniga, M. Rutherford, and A. Wolf, “A routing scheme
for content-based networking,” in INFOCOM 2004. Twenty-
third AnnualJoint Conference of the IEEE Computer and
Communications Societies, vol. 2, 2004, pp. 918–928 vol.2.

[31] G. Li, S. Hou, and H.-A. Jacobsen, “A unified approach to
routing, covering and merging in publish/subscribe systems
based on modified binary decision diagrams,” in Distributed
Computing Systems, 2005. ICDCS 2005. Proceedings. 25th
IEEE International Conference on, 2005, pp. 447–457.

[32] T. Jin, F. Zhang, M. Parashar, S. Klasky, N. Podhorszki, and
H. Abbasi, “A scalable messaging system for accelerating
discovery from large scale scientific simulations,” in HiPC.
IEEE, 2012, pp. 1–10.

[33] G. Eisenhauer, M. Wolf, H. Abbasi, S. Klasky, and
K. Schwan, “A type system for high performance communica-
tion and computation,” in e-Science Workshops (eScienceW),
2011 IEEE Seventh International Conference on, 2011, pp.
183–190.

[34] J. Lofstead, R. Oldfield, and T. Kordenbrock, “Uncon-
ventional data staging using nssi,” in In Proceedings of
IEEE/ACM International Symposium on Cluster, Cloud, and
Grid Computing, Delft, The Netherlands, May 2013.

[35] M. Li, F. Ye, M. Kim, H. Chen, and H. Lei, “A scalable and
elastic publish/subscribe service,” Parallel and Distributed
Processing Symposium, International, vol. 0, pp. 1254–1265,
2011.

