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Abstract

There has been significant interest and progress recently in algorithms that solve regression problems
involving tall and thin matrices in input sparsity time. These algorithms find shorter equivalent of a
n × d matrix where n � d, which allows one to solve a poly(d) sized problem instead. In practice, the
best performances are often obtained by invoking these routines in an iterative fashion. We show these
iterative methods can be adapted to give theoretical guarantees comparable and better than the current
state of the art.

Our approaches are based on computing the importances of the rows, known as leverage scores, in
an iterative manner. We show that alternating between computing a short matrix estimate and finding
more accurate approximate leverage scores leads to a series of geometrically smaller instances. This gives
an algorithm that runs in O(nnz(A) + dω+θε−2) time for any θ > 0, where the dω+θ term is comparable
to the cost of solving a regression problem on the small approximation. Our results are built upon the
close connection between randomized matrix algorithms, iterative methods, and graph sparsification.

1 Introduction

Least squares and `p regression are among the most common computational linear algebraic operations. In
the simplest form, given a matrix A and a vector b, the regression problem aims to find x that minimizes:

‖Ax− b‖p

Where ‖·‖p denotes the p-norm of a vector, aka. ‖z‖p = (
∑

i |zi|p)1/p. The case of p = 2 is equivalent

to the problem of solving the positive semi-definite linear system ATA [Str93], and is one of the most
extensively studied algorithmic question. Over the past two decades, it was shown that `1 regression has
good properties in recovering structural information [Can06]. These results make regression algorithms a
key tool in data analysis, machine learning, as well as a subroutine in other algorithms.

The ever growing sizes of data raises the natural question of algorithmic efficiency of regression routines.
In the most general setting, the answer is far from satisfying with the only general purpose tool being convex
optimization. When A is n×d, the state of the theoretical runtime is about O((n+d)3/2d) [Vai89]. In fact,
even in the `2 case, the best general purpose algorithm takes O(ndω−1) time where ω ≈ 2.3727 [Wil12].
Both of these bounds take more than quadratic time, and more prohibitively quadratic space, making them
unsuitable for modern data where the number of non-zeros in A, nnz(A) is often 109 or more. As a result,
there has been significant interest in either first-order methods with low per-step cost [Nes07, CHW12], or
faster algorithms taking advantage of additional structures of A.

One case where significant runtime improvements are possible is when A is tall and thin, aka. n� d.
They appear in applications involving many data points in a smaller number of dimensions, or a few objects
on which much data have been collected. These instances are sufficiently common that experimental
speedups for finding QR factorizations of such matrices have been studied in the distributed [SLHD10,
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ACD+10] and MapReduce settings [CG11]. Evidences for faster algorithms are perhaps more clear in the
`2 setting, where finding x is equivalent to a linear system solve involving the d × d matrix ATA. When
n� d, the cost of inverting this matrix, O(dω) is less than the cost of examining the non-zeros in A.

Faster algorithms for approximating ATA were first studied in the setting of approximation matrix
multiplication [DKM04a, DKM04b, DKM04c]. Subsequent approaches were based on finding a shorter
matrix B such that solving a regression problem on B leads to a similar answer [DMM06, DDH+09].
The running time of these routines were also gradually reduced [MI10, DMIMW12, CDMI+12], leading to
algorithms that run in input sparsity time[CW12, MM12]. These algorithms run in time proportional to
the number of non-zeros in A, nnz(A), plus a poly(d) term.

An approach common to these algorithms is that they aim to reduce A to poly(d) sized approximation
using a single transformation. This transformation is performed in O(nnz(A)) time, after which the
problem size only depends on d, giving the poly(d) term. This is done by either obtaining high quality
sampling probabilities [DMIMW12, CDMI+12], or by directly creating B via. a randomized transform
[CW12, MM12, NN12]. These algorithms are appealing due to simplicity, speed, and that they can be
adapted naturally in the streaming setting. On the other hand, experimental works have shown that
practical performances are often optimized by applying higher error variants of these algorithms in an
iterative fashion [AMT10].

In this paper, we design algorithms motivated by these practical adaptations whose performances match
or improve over the current best. Our algorithms construct B containing poly(d) rows of A and run in
O(nnz(A) +dω+θ) time. Here the last term is due to computing inverses and change of basis matrices, and
is a lower order term since regression routines involving d×d matrices take at least dω time. In Table 1 we
give a quick comparison of our results with previous ones in the `2 and `1 settings can be found . These two
norms encompass most of the regression problems solved in practice [Can06]. To simplify the comparison,
we do not distinguish between log d and log n, and assume that A has full column rank. We will also omit
the big-O notation along with factors of ε and θ.

`2 `1

Runtime # Rows Runtime # Rows

Dasgupta et al. [DDH+09] - nd5 log d d2.5

Magdon-Ismail [MI10] nd2/ log d d log2 d -

Sohler & Woodruff [SW11] - ndω−1+θ d3.5

Drineals et al. [DMIMW12] nd log d d log d -

Clarkson et al. [CDMI+12] - nd log d d4.5 log1.5 d

Clarkson & Woodruff [CW12] nnz(A) d2 log d nnz(A) + d7 d8poly(log d)

Mahoney & Meng [MM12] nnz(A) d2 nnz(A) log n+ d8 d3.5

Nelson & Nguyen [NN12] nnz(A) d1+θ Similar to [CW12] and [MM12]

This paper nnz(A) + dω+θ d log d nnz(A) + dω+θ d3.66

Table 1: Comparison of runtime and size of B for `2 and `1, θ is any constant that’s > 0

As with previous results, our approaches and bounds for `2 and `p are fairly different. We will state
them in more details and give a more detailed comparison with previous results in Section 2. The key
idea that drives our algorithms is that a constant factor reduction of problem size suffices for a linear time
algorithm. This is a much weaker requirement than reducing directly to poly(d) sized instances, and allows
us to reexamine statistical projections with weaker guarantees. In the `2 setting, projections that do not
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even preserve the column space of A can still give good enough sampling probabilities. For the `p setting,
estimating the probabilities in the ‘wrong’ norm (e.g. `2) still leads to significant reductions. Most of the
subroutines that we’ll use have either been used as the final error correction step [DDH+09, CDMI+12,
CW12], or are known in folklore. However, by combining these tools with techniques originally developed
in graph sparsification and combinatorial preconditioning [KLP12], we are able to convert them into much
more powerful algorithms. A consequence of the simplicity of the routines used is that we obtain a smaller
number of rows in B in the `2 setting, as well as a smaller running time in the `p setting. We believe
these reductions in the poly(d) term are crucial for closing the gap between theory and practice of these
algorithms.

2 Overview

We start by formalizing the requirements needed for B to be a good approximation to A. In the `2 setting
it is similar to BTB being an approximation to ATA, but looking for B instead of BTB has the advantage
of being extendible to `p norms [DDH+09]. The requirement for B is:

(1− ε)‖Ax‖p ≤ ‖Bx‖p ≤ (1 + ε)‖Ax‖p, ∀x ∈ Rd

Finding such a B is equivalent to reducing the size of a regression problem involving A since:

min
x
‖Ax− b‖p = min

x

∥∥∥∥∥[A,b]

[
x

−1

]∥∥∥∥∥
p

This means finding a shorter (1±ε) approximation to the n×(d+1) matrix [A,b], and solving a regression
problem on this approximation gives a solution within 1 +O(ε) of the minimum.

Row sampling is one of the first studied approaches for finding such B [DMM06, MI10, DDH+09]. It
aims to build B consisting of a set of rescaled rows of A chosen according to some distribution. While it
appears to be a even more restrictive way of generating B, it nevertheless leads to a row count within a
factor of log d of the best known bounds [BSS09, BDMI11]. In `2, there exists a distribution that produces
with high probability a good approximation B with O(d log d) rows [AW02, RV07, Ver09, Har11]; while
under `p norm, poly(d) rows is also known [DDH+09]. It was first shown that row sampling can speed up
`2 this can be viewed as a small subset that preserves most of the structure. These smaller equivalents have
been studied as coresets under a variety of objectives [BHPI02, AHpV05]. However, various properties of
the `p norm, especially in the case of p = 2, makes row sampling a more specialized instance.

The main framework of our algorithm is iterative in nature and relies on the two-way connection
between row sampling and estimation of sampling probabilities. A crude approximation to A, A′ allows us
to compute equally crude approximations of sampling probabilities, while such probabilities in turn lead
to higher quality approximations. The computation of these sampling probabilities can in turn be sped
up using a high quality approximation of A′. Our algorithm is based on observing that as long as A′ has
smaller size, we have made enough progress for an iterative algorithm. A single step in this algorithm
consists of computing a small but crude approximation A′, finding a higher quality approximation to A′,
and using this approximation to find estimates of sampling probabilities of the rows of A. This leads to
a tail-recursive process that can also be viewed as an iterative one where the calls generate a sequence of
gradually shrinking matrices, and sampling probabilities are propagated back up the sequence. An example
of such a sequence is given in Figure 1.

We will term the creation of the coarse approximation as reduction, and the computation of the more
accurate approximation based on it recovery. As in the figure, we will label the matrices A that we
generate, as well as their approximations using the indices (l).

• reduction: creates a smaller version of A(l), A(l + 1) with fewer rows either by a projection or a
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A = A(0) A(1) . . . A(L − 1) A(L)

B = B(0) B(1)
. . .

B(L − 1) B(L)

p(L). . . . . .p(1)

≈ ≈ ≈ =

Figure 1: Main workflow of our algorithms when viewed as an iterative process. Sequence of gradually
smaller matrices generated are on top, and the computed sampling probabilities and resulting approxima-
tions are below.

coarser row sampling process. Equilvaent to moving rightwards in the diagram.

• recovery: finds a small, high quality approximation of A(l), B(l) using information obtained from
A(l), A(l + 1), and B(l + 1). This is done by estimating leverage scores p(l) and is equivalent to
moving leftwards in the diagram.

Both our `2 and `p algorithms can be viewed as giving reduction and recovery routines. In the `2
setting our reduction step consists of a simple random projection, which incurs a fairly large distortion
and may not even preserve the null space. Our key technical components in Section 4 show that one-sided
bounds on these projections are sufficient for recovery. This allows us to set the difference incurred by the
reduction to κ = dθ for a arbitrarily small θ > 0, while obtaining a reduction factor of κO(1) = dO(θ). This
error is absorbed by the sampling process, and does not accumulate across the iterations.

Theorem 2.1 Given a n × d matrix A along with failure probability δ = d−c and allowed error ε. For
any constant θ > 0, we can find in O(nnz(A) + dω+θε−2) time, with probability at least 1− δ, a matrix B
consisting of O(d log dε−2) rescaled rows of A such that

(1− ε)‖Ax‖2 ≤ ‖Bx‖2 ≤ (1 + ε)‖Ax‖2

for all vectors x ∈ Rd.

This bound improves the O(d2) rows obtained in the first results with input-sparsity runtime [CW12],
and matches the best bound known using oblivious projections [NN12], which was obtained concurrently.
A closer comparison with [NN12] shows that our bounds does not have a factor of ε−1 on the leading term
nnz(A), but has worse dependencies on θ.

For `p norms, we show that significant size reductions can be made if we perform row sampling using
sampling probabilities obtained in a different norm. Specifically, if A(i) has n(i) rows, A(i + 1) has
O(n(i)cppoly(d)) where cp < 1 if the intermediate norm `p′ is chosen appropriately. This means the
number of rows will reduce doubly exponentially as we iterative, and quickly becomes O(poly(d)).

This allows us to invoke our algorithms from Section 4 , as well as `′p approximations under different
norms to compute these probabilities. The analysis is also more direct as such samples have stronger
guarantees than randomized projections, We can set κ to a constant, and recover an approximation to A
after each iteration instead of going gradually back up the sequence of matrices.

Our projection and recovery methods are similar to the ones used to for increasing the accuracy of `1
row sampling in [CDMI+12]. However, to our knowledge, our result is the first that uses `2 row sampling
as the primary routine. This leads to the first algorithms for p 6= 1, 2 that do not use ellipsoidal rounding.
In Section 5.1 we present a one step variant that computes sampling probabilities under the `2 norm. It
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gives B with about d
4
p rows when p ≤ 2 and d

3p−2
4−p rows when 2 ≤ d < 4. We can further iterate upon this

algorithm, and compute sampling probabilities under `p′ norm for some p′ between 2 and p. A two-level
version of this algorithm for `1 is analyzed in Section 5.2, giving the following:

Theorem 2.2 Given a n × d matrix A along with failure probability d−c and allowed error ε. For any
constant θ > 0, we can find in O(nnz(A) + dω+θε−2) time, with probability at least 1 − d−c, a matrix B

consisting of O(d4
√
2−2+θ) rescaled rows of A such that

(1− ε) ‖Ax‖1 ≤ ‖Bx‖1 ≤ (1 + ε) ‖Ax‖1

for all vectors x ∈ Rd.

This method readily leads to B with poly(d) rows when p ≥ 4, and fewer rows than the above bound when
1 ≤ p < 4. However, such extensions are limited by the discontinuity between bounds on the sampling
process in the `2 [AW02, RV07, Ver09, Har11] and `p settings [DDH+09]. As a result, we only show the
algorithm for `1 in order to simplify the presentation.

An additional strength of our approach is that the randomized routines used hold with high probability.
Most of the earlier results that run in time nearly-linear in the size of A have a constant success probability
instead, and will require boosting to improve this probability. Also, as our algorithm is row sampling based,
each row in our output is a scaled copy of some row of the original matrix. This means specialized structure
for rows of A are likely to be preserved in the smaller regression problem instance. Our results also show
a much tighter connection between `2 and `p row sampling, namely that finding good `2 approximations
alone is sufficient for iterative reductions in matrix size.

The main drawback of our algorithm in the `2 setting is that it does not immediately extend to
computing low-rank approximations. The method given in [CW12] relies crucially on first transform being
oblivious, although our algorithm can be incorporated in a limited way as the second step. Also, our
algorithms for `p row-sampling in Section 5 invokes concentration bounds from [DDH+09] in a black-
box manner, even though our sampling probabilities obtained by scaling up probabilities related to `2.
We believe investigating the possibilities of extending our approaches to low-rank approximations and
obtaining tighter concentration are natural directions for future work.

3 Preliminaries

We begin by stating key notations and definitions that we will use for the rest of this paper. We will use
‖x‖p to denote the `p norm of a vector. The two values of p that we’ll use are p = 1 and p = 2, which

correspond to ‖x‖1 =
∑

i |xi| and ‖x‖2 =
√∑

i x
2
i . For two vectors x and y, x ≥ y means x is entry-wise

greater or equal to y, aka. xi ≥ yi for all i.
For a matrix A, we use Ai∗, or ai to denote the ith row of A, and A∗j to denote its jth column. Note

that if A ∈ Rn×d, ai is a row vector of length d. We will also use the generalized p-norm |||·|||p of a matrix,

which essentially treats all entries of the matrix as a single vector. Specifically, |||A|||p = (
∑

ij |Aij |p)1/p.
When p = 2, it is known as the Frobenius norm, ‖ · ‖F .

A matrix C is positive semi-definite if all its eigenvalues are non-negative, or equivalently xTCx ≥ 0
for all vectors x. Since xT (ATA)x = ‖Ax‖22, ATA is positive semi-definite for any A. Similarity between
matrices is defined via. a partial order on matrices. Given two matrices C1 and C2, C1 � C2 denotes that
C2 −C1 is positive semi-definite. The connection between this notation and row sampling is clear in the
case of `2, specifically ATA � BTB is equivalent to ‖Ax‖2 ≤ ‖Bx‖2.

We will also define the pseudoinverse of C, C† as the linear operator that’s zero on the null space of C,
while acting as its inverse on the rank space. For operators that act on the same space, spectral orderings
of pseudoinverses behaves the same as with scalars. Specifically, if C1 and C2 have the same null space
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and C1 � C2, then C†2 � C†1. Given a subspace of Rd, an orthogonal projector onto it, P is a symmetric
positive-semidefinite matrix taking vectors into their projection in this space. For example, if this space
is rank space of some positive semi-definite matrix C, then an orthogonal projection operator is given by
CC†.

Our algorithms are designed around the following algorithmic fact: for any norm p and any matrix
A ∈ Rn×d, there exist a distribution on its rows such that sampling poly(d) entries from this distribution
and rescaling them gives B such that with probability at least 1− d−c:

(1− ε)‖Ax‖p ≤ ‖Bx‖p ≤ (1 + ε)‖Ax‖p, ∀x ∈ Rd.

This sampling process can be formalized in several ways, leading to similar results both theoretically and
experimentally [IW12]. We will treat it as a blackbox Sample(A,p) that takes a set of probabilities over
the rows of A and samples them accordingly. It keeps row i or A with probability min{1, pi}, and rescales
it appropriately so the expected value of this row is preserved. The two key properties of Sample(A,p)
that we will use repeatedly are:

• It returns B with at most O(|p|1) rows.

• Its running time can be bounded by O(n+ |p|1 log n).

The convergence of sampling relies on matrix Chernoff bounds, which can be viewed as generalizations
of single variate concentration bounds. Necessary conditions on the probabilities can be formalized in
several ways, with the most common being statistical leverage scores. Although these values have been
studied in statistics, their use in algorithms is more recent. To our knowledge, their first use in a limited
row sampling setting was in spectral sparsification of graphs [SS08]. The most general definition of p-
norm leverage scores is based on the row norms of a basis of the column space of A. However, significant
simpliciations are possible when p = 2, and this alternate view is crucial for in our algorithm. As a result,
we will state the relevant convergence results for Sample separately in Sections 4 and 5.

They show that statistical leverage scores are closely associated the probabilities needed for row sam-
pling, and give algorithms that efficiently approximate these values. We will also formalize an observation
implicit in previous results that both the sampling and estimation algorithms are very robust. The high
error-tolerance of these algorithms makes them ideal as core routines to build iterative algorithms upon.

One issue with the various concentration bounds that we will prove is that they hold with high proba-
bility in d. That is, the fail with probability 1− d−c for some constant c. In cases where n� poly(d), this
will prevent us from taking a union bound over many sampling steps. However, it can be shown that in
such cases, padding all sampling probabilities with 1/poly(d) in the sampling process will narrow the key
steps back down to poly(d) ones. This leads to a matrix with O(nnz(A)/poly(d)) rows, which can in turn
be handled in O(nnz(A)) time using routines that run in O(npoly(d)) time (e.g. [DDH+09]). Therefore
for the rest of this paper we will assume n = poly(d).

4 Iterative Row Sampling for `2

We start by presenting our algorithm for computing row sampling in the `2 setting. Crucial to our approach
is the following basis-free definition of statistical leverage scores of τ :

τi
def
= ai(A

TA)+aTi , for i = 1, . . . , n,

where ai is the i-th row of A.
To our knowledge, the first near tight bounds for row sampling using statistical leverage scores were

given in [AW02], and various extensions and simplifications were made since [RV07, Ver09, Har11, AT11].
They can be stated as follows:
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Lemma 4.1 If τ̃ is a set of probabilities such that τ̃ ≥ τ , then for any constants c and ε, there exists a
function Sample(A, O(log d, ε)τ̃ ) which returns B containing O(log d ‖τ̃‖1 ε−2) rows and satisfying

(1− ε)‖Ax‖2 ≤ ‖Bx‖2 ≤ (1 + ε)‖Ax‖2, ∀x ∈ Rd

with probability at least 1− d−c.

The importance of statistical leverage scores can be reflected in the following fact, which implies that
we can obtain B with O(d log d) rows.

Fact 4.2 (see e.g. [SS08]) Given n× d matrix A, and let τ be the leverage score w.r.t. A. Assume A has
rank r, then

n∑
i=1

τi = r ≤ d

Although it is tempting to directly obtain high quality approximations of the leverage scores, their
computation also requires a high quality approximation of ATA, leading us back to the original problem
of row sampling. Our way around this issue relies on the robustness of concentration bounds such as
Lemma 4.1. Sampling using even crude estimates on leverage scores can lead to high quality approximations
[DDH+09, DM10, DMMS11, DMIMW12, AT11]. Therefore, we will not approximate ATA directly, and
instead obtain a sequence of gradually better approximations. The need to compute sampling probabilities
using crude approximations leads us to define a generalization of statistical leverage scores.

4.1 Generalized Stretch and its Estimation

The use of different matrices to upper bound stretch has found many uses in combinatorial preconditioning,
where it’s termed stretch [SW09, KLP12, DM10]. We will draw from them and term our generalization of
leverage scores generalized stretch. We will use STRB(ai) to denote the approximate leverage score of
row i computed as follows:

STRB(ai)
def
= ai(B

TB)†ai (4.1)

Under this definition, the original definition of statistical leverage score τi equals to STRA(ai). We will refer
to B as the reference used to compute stretch. It can be shown that when B1 and B2 are reasonably close
to each other, stretch can be used as upper bounds for leverage scores in a way that satisfies Lemma 4.1.

Lemma 4.3 If B1 and B2 satisfies:

1

κ
BT

1 B1 � BT
2 B2 � BT

1 B1

Then for any vector x we have:

STRB1(x) ≤ STRB2(x) ≤ κSTRB1(x)

The proof will be shown in Appendix A.
The stretch notation can also be extended to a set of rows, aka. a matrix. If A is a matrix with n rows,

STRB(A) denotes:

STRB(A)
def
=

n∑
i=1

STRB(ai). (4.2)
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This view is useful as it allows us to write stretch as the `2 norm of a vector, or more generally the stretch
of a set of rows as the Frobenius norm of a matrix.

Fact 4.4 The generalized stretch of the ith row of A w.r.t B equals to its `22 norm under the transformation

(BBT )†
1
2 :

STRB(ai) = ‖(BBT )†
1
2 aTi ‖22 = ‖ai(BBT )†

1
2 ‖22

and the total stretch of all rows is

STRB(A) = ‖(BBT )†
1
2 AT ‖2F = ‖A(BBT )†

1
2 ‖2F

This representation leads to faster algorithms for estimating stretch using the Johnson-Lindenstrauss
transform. This tool is used in a variety of settings from estimating effective resistances [SS08] to more
generally leverage scores [DMIMW12]. We will use the following randomized projection theorem:

Lemma 4.5 (Lemma 2.2 from [DG03]) Let y be a unit vector in Rd. Then for any positive integer k ≤ d,
let U be a k × d matrix with entries chosen independently from the Gaussian distribution N (0, 1). Let
x = Uy and L = ‖x‖22. Then for any R > 1,

1. E(L) = k

2. Pr (L ≥ Rk) < exp
(
k
2 (1−R+ lnR)

)
3. Pr

(
L ≤ k

R

)
< exp

(
k
2 (1−R−1 − lnR)

)
We will also use this lemma in our reduction step to bound the distortion when rows are combined. Note
that the requirements of Lemma 4.1 and the guarantees of Sample allows our estimates to have larger
error. This means we can use fewer vectors in the projection, and scale up the results to correct potential
underestimates. Therefore, we can trade the coefficient on the leading term nnz(A) with a higher number
of sampled row count. The bound below accounts for both error incurred by B, and the larger error caused
by this error.

Lemma 4.6 For any constant c, there is a routine ApproxStr(A,B, κ,R), shown in Algorithm 4, that
when given a n× d matrix A where n = poly(d), and an approximation B with m rows such that:

1

κ
ATA � BTB � ATA

return in O((nnz(A) + d2) logR d + (m + d)dω−1) time and upper bounds τ̃i such that with probability at
least 1− d−c

1. for all i, τ̃i ≥ τi.

2. ‖τ̃‖1 ≤ O(R2κd).

4.2 Reductions and Recovery

Our reduction and recovery processes are based on projecting A to one with fewer rows, and moving the
estimates on the projection back to the original matrix. Our key operation is to combine every R rows into
k rows, where R and k are set to dθ and O(c/θ) respectively. By padding A with additional rows of zeros,
we may assume that the number of rows is divisible by R. We will use nb = n/R to denote the number of
blocks, and use the notation ·(b) to index into the bth block. Our key step is then a (R, k)-reduction of the
rows:

8



Definition 4.7 A (R, k)-reduction of A describes the following procedure:

1. For each block A(b), pick U(b) to be a k×R random Gaussian matrix with entries picked independently
from N (0, 1) and compute A↓(b) = U(b)A(b).

2. Concatenate the blocks A↓(b) together vertically to form A↓.

We first show that projections preserve the stretch of blocks w.r.t. A. This can be done by bounding
the effect of U(b) on the norm of each column of A(b)(A

TA)†
1
2 . It follows directly from properties of the

Johnson-Lindenstrauss projections described in Lemma 4.5, and we’ll give its proof in Appendix B.

Lemma 4.8 Assume R = dθ ≥ e2 for some constant θ and let A↓ be a (R, k)-projection of A. For any
constant c > 0 there exists a constant k = O(c/θ) such that

STRA(A↓(b)) ≥
k

R
STRA(A(b))

holds for all block b = 1, . . . , nb with probability at least 1− d−c.

We next show that we can change the reference from A to A↓, and use STRA↓(A↓(b)) as upper bounds

for STRA(A↓(b)). As a first step, we need to relate ATA to A↓TA↓. Since each A↓(b) is formed by merging

rows of A↓(b) = U(b)A(b), A↓T(b)A↓(b) can be upper bounded by AT
(b)A(b) times a suitable term depending

on U(b). We prove the following in Appendix B.

Lemma 4.9 The following holds for each block b:

A↓T(b)A↓(b) � ‖U(b)‖2F ·AT
(b)A(b)

However, generalized stretches w.r.t. A and A↓ are evaluated under the norms given by the inverses of
these matrices, (ATA)+ and (A↓TA↓)+. As a result, we need to bound the operator bound between these
two pseudoinverses, which we obtain using the following lemma.

Lemma 4.10 Let C and D be symmetric positive semi-definite matrices and let P be the orthogonal
projection operator onto the range space of C. Then:

PC+P � P(C + D)+P

This is straightforward when both C and D are full rank, or share the same null space. However, as
pseudo-inverses do not act on the null space, it is crucial that we’re only considering vectors of the form
a′i. This Lemma is proven in Appendix B. Combining it with bounds in the other direction allows us to
bound the distortion caused by switching reference from A to A↓.

Lemma 4.11 For any constant c, there exists a constant c′, such that with probability at most 1 − d−c,
we have for each row i of A↓, denoted by a↓i, satisfies

c′kR log d · STRA↓(a↓i) ≥ STRA(a↓i)

Proof Denote by A(b) the b-th block of A and A↓(b) the corresponding block in A↓, by Lemma 4.9,

A↓T(b)A↓(b) �
∥∥U(b)

∥∥2
F

AT
(b)A(b)

9



Since each U(b) consists of k×R independent random variables chosen from N (0, 1), ‖U(b)‖2F is distributed
as N (0, kR). This gives:

Pr
(
‖U(b)‖2F > `kR

)
≤ exp(−`) (4.3)

As n = poly(d), this probability can be bounded by d−cn−1 for an appropriate choice of ` = O(log d). By
a union bound over all the blocks, we have ‖U(b)‖2F ≤ `kR for all b with probability of at least 1 − d−c.
Applying Lemma 4.9 and summing over these blocks gives:

A↓TA↓ � `kR ·ATA

Let P the projection operator onto the range space of A↓TA↓. Applying Lemma 4.10 with C = A↓TA↓
and D = `kRATA−A↓TA↓ gives

P
(
ATA

)†
P � `kR ·P

(
A↓TA↓

)†
P

Further note that a↓i is completely contained within the range space of A↓TA↓. Therefore for all i,
Pa↓i = a↓i and:

STRA(a↓i) = a↓iP
(
ATA

)†
Pa↓Ti

≤ `kR · a↓iP
(
A↓TA↓

)†
Pa↓Ti

= `kR · STRA↓(a↓i)

Therefore

Pr [`kR · STRA↓(a↓i) ≥ STRA(a↓i)] ≥ Pr
[
PA↓TA↓P � `kR ·PATAP

]
≥ 1− d−c.

�

Combining Lemmas 4.11 and 4.8 shows that with high probability, scaling up STRA↓(A↓(b)) byO(R2 log d)
gives upper bounds for the leverages scores in the original blocks of A.

Corollary 4.12 For any constant c, there exists a setting of constants such that for any R = dθ, we have
with probability at least 1− d−c

c′R2 log d · STRA↓(A↓(b)) ≥ STRA(A(b))

holds for all b.

4.3 Iterative Algorithm

It remains to algorithmize the estimates that we obtain using this projection process. Projecting A to
A↓ gives a matrix with fewer rows, and a way to reduce the sizes of our problems. A fast algorithm
follows by examining the sequence of matrices A = A(0),A(1), . . .A(L) obtained using such projections.
Once A(L) has fewer than nnz(A)d−3 rows, A(L)TA(L) can be approximated directly. This then allows
us to approximate the statistical leverage scores of the rows of A(L) Corollary 4.12 shows that stretches
computed on A(l), τ̃(l) can serve as sampling probabilities in A(l − 1). This means we can gradually
propagate solutions backwards from A(L) to A(0). We do so by maintaining the invariant that B(l) has a
small number of rows and is close to A(l). The total generalized stretch of A(l) w.r.t. B(l) can be used as

10



upper bounds of the statistical leverage scores of A(l− 1) after suitable scaling.. This allows the sampling
process to compute B(l − 1), keeping the invariant for l − 1. Pseudocode of the algorithm is shown in
Algorithm 1, which is illustrated in Figure 2.

Algorithm 1 Row Sampling using Projections

RowSampleL2(A, R, ε)

Input: Reduction rate R, n× d matrix A, allowed approximation error ε, failure probability δ = d−c.

Output: Sparsifier B that contains O(R5d log d/ε2) scaled rows of A such that (1 − ε)ATA � BTB �
(1 + ε)ATA.

Set L = dlogR(n/d)e
Set ε(0) = ε/3, ε(1) . . . ε(l) = 1/2
A(0) = A
for l = 1 . . . L do

Let A(l) be a (R, k)-projection of A(l − 1)
end for
B(L)← A(L)
for i = L . . . 1 do

τ̃ ′(l)← O(R3 log d) ·ApproxStr(A(l),
√

2
3B(l), R,R)

Compute τ̃(l − 1) by setting each entry in τ̃(l − 1)(b) to |τ̃ ′(l)(b)|1
B(l − 1)← Sample(A(l − 1), τ̃(l − 1), ε(l))

end for
τ̃ ′(0)← ApproxStr(B(0),B(0), 2, 2)
return Sample(B(0), τ̃ ′(0), ε/3)

k R rows

s3:

s1:
s2:

s5:
s8:

B(2)=A(2)

A(2) A(1) A(0)

B(1) B(0)

s4:
sampling 
by s6:

0
s7: sampling 

by 
s9:

(R,r)-projection R
k

k
k

R

(R,r)-projection

R

Reduction: s1-s2

Recovery: s3-s9

Figure 2: Illustration of Algorithm 1 by using L = 2. There are mainly two stages with 9 steps. On
the reduction stage, we obtain shorter A(1) and A(2) by iteratively doing (R, r)-projection. On the
next recovery stage, we approximate the leverage scores of A(1) by the ones computed from A(2) and
B(2). Then B(1) is sampled based on this approximated scores, which will be used to further obtain the
approximated leverage scores of A(0). The final step which samples B(0) once again is not shown here.

Sampling probabilities for A(l− 1) are obtained by computing the stretch of A(l) w.r.t. B(l). We first
show these values, τ̃(l − 1), are with high probability upper bounds for the statistical leverage scores of
A(l − 1), τ(l − 1).
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Lemma 4.13 Assume A(l) and B(l) satisfy the following condition

1

2
A(l)TA(l) � B(l)TB(l) � 3

2
A(l)TA(l)

Then for any constant c, there is a setting of the constants such that

• τ̃ (l − 1) ≥ τ (l − 1)

• ‖τ̃ (l − 1)‖1 ≤ O(dR3 log d)

holds with probability at least 1− d−c.

Proof The given condition implies that
√

2
3B(l) satisfies the condition needed for Lemma 4.6 with κ = 3.

Let the constants c′ = c+ logd 2, then with probability at least 1− d−c′ we have:

τ̃ ′(l) ≥ O(R2 log d)τ (l)

Since A(l) is a projection of A(l − 1), we can index corresponding blocks in them. Apply Corollary 4.12,
then with probability at least 1− d−c′ , we have

O(R2 log d)
∥∥τ (l)(b)

∥∥
1
≥
∥∥τ (l − 1)(b)

∥∥
1

for all blocks. As each entries of τ̃ (l− 1) in block b is assigned with
∥∥τ̃ ′(l)(b)∥∥1, by the union bound, then

for all i in block b

τ̃ (l − 1)i =
∥∥τ̃ ′(l)(b)∥∥1 ≥ ∥∥τ (l − 1)(b)

∥∥
1
≥ τ (l − 1)i

holds for all blocks b with probability at least 1− 2d−c
′
, which is equal to 1− d−c by the definition of c′.

It remains to upper bound ‖τ̃ (l − 1)‖1. Lemma 4.6 Part 2 gives, with probability at least 1 − d−c,
‖τ̃ ′(l)‖1 ≤ O(dR2 log d). As each

∥∥τ̃ ′(l)(b)∥∥1 is assigned to the R entries in τ̃ (l−1)(b), we get ‖τ̃ (l − 1)‖1 ≤
O(dR3 log d) with the same probability. �

Combining these with the fact that the number of rows decrease by a factor of O(R) per iteration
completes the algorithm. Our main result for `2 row sampling is obtained by setting R to dθ. Applying
Lemma 4.13 inductively backwards in l gives the overall bound.

Theorem 4.14 For any constant c, there is a setting of constants such that if RowSampleL2, shown in
Algorithm 1, is ran with R = dθ, then with probability at least 1−d−c it returns B in O(nnz(A)+dω+4θε−2)
time such that:

(1− ε)ATA � BTB � (1 + ε)ATA

and B has O(d log dε−2) rows, each being a scaled copy of some row of A,

Proof We first show correctness via. induction backwards on l. Define c′ = c+ 1, we show that B(l) has
O(dR4 log dε(l)−2) rows and satisfies

(1− ε(l))A(l)TA(l)T � B(l)TB(l) � (1 + ε(l))A(l)TA(l)T ,

with probability at least 1− 3(L− l)dc′ for each l.
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As k = O(c/θ) is a constant, one (R, k)-projection decreases the number of rows by a factor of O(R).
After L = logR(n/d) projections, we get that A(L) has O(d) rows. Therefore the base case where l = L
follows from B(L) = A(L).

For the inductive step, we assume that the inductive hypothesis holds for l ≥ 1 and try to show it for
l − 1. As ε(l) was set to 1/2, we have:

1

2
A(l)TA(l) � B(l)TB(l) � 3

2
A(l)TA(l)

This allows us to invoke Lemma 4.13, which combined with Lemma 4.1 gives that with probability 1−d−c′ ,
the inductive hypothesis also holds for l − 1.

The final sampling step on B(0) with R = 2 guarantees that ‖τ̃ ′(0)‖1 ≤ O(d), which gives a final row
count of O(d log d/ε2). The overall failure probability follows from union bounding this with the failure
probabilities from the hypothesis and Lemma 4.13.

We now bound the total running time, starting with the projections. Since k = O(1), each (R, k)-
projection reduces R rows into O(1) rows, so the sparsity patterns are kept, namely nnz(A(l + 1)) =
O(nnz(A(l))). As U(b) has k rows for all b, then the cost of constructing A(l) from A(l− 1) is O(nnz(A)).

Note that since R = dθ, L = logR(n/d) = logR(poly(d)) is a constant. So we get a total cost of O(nnz(A))
over all L projections.

Since B(l) hasO(dR3 log2 dε(l)−2) rows, Lemma 4.6 gives that each call to ApproxStr takesO(nnz(A)+
dω+4θε−2) time, where we upper bound log2 d by dθ. The cost of the final step on B(0) can be bounded
similarly. �

5 Algorithm for Preserving `p-norm

We now turn to the more general problem of finding B with poly(d) rows such that:

(1− ε) ‖Ax‖p ≤ ‖Bx‖p ≤ (1 + ε) ‖Ax‖p ∀x ∈ Rd

We will make repeated use of the following (tight) inequality between `2 and `p norms, which can be
obtained by direct applications of power-mean and Hölder’s inequalities.

Fact 5.1 Let x be any vector in Rd, and p and q any two norms where 1 ≤ p ≤ q, we have:

‖x‖q ≤ ‖x‖p ≤ d
1
q
− 1
p ‖x‖q

We will use this Fact with one of p or q being 2, in which case it gives:

• If 1 ≤ p ≤ 2, ‖x‖2 ≤ ‖x‖p ≤ d
1
2
− 1
p ‖x‖2

• If 2 ≤ p, d
1
p
− 1

2 ‖x‖2 ≤ ‖x‖p ≤ ‖x‖2

As Ax ∈ Rn, its `2 and `p norms can differ by a factor of poly(n). This means the `2 row sampling
algorithm from Section 4 can lead to poly(n) distortion. Our algorithm in this section can be viewed as a
way to reduce this distortion via. a series of iterative steps. Once again, our algorithm is built around a
sampling concentration bound. The sampling probabilities are based on the definition of a well-conditioned
basis, which is more flexible than `2 statistical leverage scores.

Definition 5.2 Let A be an n×d matrix of rank r, p ∈ [1,∞] and q be its dual norm such that 1
p + 1

q = 1.
Then an n× r matrix U is an (α, β, p)-well-conditioned basis for the column space of A if the columns of
U span the column space of A and:
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1. |||U|||p ≤ α.

2. For all x ∈ Rr, ‖x‖q ≤ β ‖Ux‖p.

A `p analog of the sampling concentration result given in Lemma 4.1 was shown in [DDH+09]. It can
be viewed a generalization of Lemma 4.1.

Lemma 5.3 (Theorem 6 of [DDH+09]) Let A be a n× d matrix with rank r, ε ≤ 1/7, and let p ∈ [1,∞).
Let U be an (α, β, p)-well-conditioned basis for A. Then for any sampling probabilities p ∈ Rn such that:

pi ≥ cp(αβ)p
‖Ui∗‖pp
|||U|||pp

,

where Ui∗ is the i-th row of U and cp is a constant depending only on p. Then with probability at least
1− d−c, Sample(A, p, ε) returns B satisfying

(1− ε) ‖Ax‖p ≤ ‖Bx‖p ≤ (1 + ε) ‖Ax‖p ∀x ∈ Rd

We omitted the reductions of probabilities that are more than 1 since this step is included in our
formulation of Sample. Several additional steps are needed to turn this into an algorithmic routine, the
first being computing U. A näıve approach for this requires matrix multiplication, and the size of the
outcome may be more than nnz(A). Alternatively, we can find a linear transform used to create it, aka. a
matrix C such that U = AC.

The estimation of ‖(AQ)i∗‖pp and sampling can then be done in a way similar to Section 4. When
1 ≤ p ≤ 2, we can compute O(1) approximations using p-stable distributions [Ind06] in a way analogous
to Section 4.2.1. of Clarkson et al. [CDMI+12]. When 2 ≤ p, we will use the 2-norm as a surrogate at
the cost of more rows. As all of our calls to Sample will be using probabilities estimated via. the same
matrix, we will the estimation of p-norm leverage scores and sampling as a single blackbox.

Lemma 5.4 For any constant c, there exist an algorithm EstimateAndSampleP(A,C, α, β,R, ε) that
given a A, C such that AC is a (α, β, p)-well-conditioned basis for A, returns a matrix B with probability
at least 1− d−c such that:

(1− ε)‖Ax‖p ≤ ‖Bx‖p ≤ (1 + ε)‖Ax‖p
in O(nnz(A) logR(d) +Rdω log d) time and the number of rows in B can be bounded by:{

O((αβR)pd log(d)ε−2) if 1 ≤ p ≤ 2

O((αβR)pd
p
2 log(d)ε−2) if 2 ≤ p

5.1 Sampling Using `2-leverage scores

Our starting point is the observation that a good basis for `2, specifically a nearly orthonormal basis of A
still allows us to reduce number of rows substantially under `p.

Lemma 5.5 If C ∈ Rd×r satisfies 1
2(ATA)† � CCT � 3

2(ATA)† then U = AC is a (α, β, p)-well-

conditioned basis for A where αβ ≤ O(n
| 1
2
− 1
p
|
d
| 1
2
− 1
p
|+ 1

2 ).

Proof We start by show that UTU is close to the identity matrix as an operator. Also, since CTC
is a full rank matrix and CT (CCT )†C is a projection operator onto the column space of C, we have
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CT (CCT )†C = I. Taking pseudoinverses of the given condition on C gives:

2

3
(CCT )† � ATA � 2(CCT )†

Substituting it into U = AC then gives:

UTU = CTATAC � 2CT (CCT )†C = 2I

and

2

3
I � 2

3
CT (CCT )†C � UTU

This allows us to infer that |||U|||2 ≤
√

2d, and for any vector x, ‖x‖2 ≤
√

2 ‖Ux‖2.
Next we find values of α and β that meet the requirements of a well-conditioned basis given in Defini-

tion 5.2. Let q be the dual norm for p which satisfies 1
p + 1

q = 1.
First consider the case where 1 ≤ p ≤ 2. We can view all entries of the matrix U as a vector of length

nr ≤ nd vector. Apply Fact 5.1 gives:

|||U|||p ≤ (nd)
1
p
− 1

2 |||U|||2

Which gives |||U|||2 ≤
√

2d
1
2 and therefore α =

√
2(nd)

1
p
− 1

2d
1
2 . For the second part, given any vector

x, we have

‖x‖q ≤ ‖x‖2 (by Fact 5.1 on x since q ≤ 2)

≤
√

2 ‖Ux‖2
≤
√

2 ‖Ux‖p (by Fact 5.1 on Ux since 1 ≤ p ≤ 2)

which means β =
√

2 suffices.
Now we consider the case where p ≥ 2 similarly.

|||U|||p ≤ |||U|||2 ≤
√

2d1/2

and:

‖x‖q ≤ d
1
q
− 1

2 ‖x‖2 (by Fact 5.1 on x since q ≤ 2)

= d
1
2
− 1
p ‖x‖2 (since

1

q
= 1− 1

p
)

≤
√

2d
1
2
− 1
p ‖Ux‖2

≤
√

2d
1
q
− 1

2n
1
2
− 1
p ‖Ux‖p (by Fact 5.1 on Ux with 2 ≤ p)

=
√

2(nd)
1
2
− 1
p ‖Ux‖p

Combining the bounds from these two cases on p gives that U is a (α, β, p)−well-conditioned basis,
where

α =

{√
2d

1
2 for p ≥ 2

√
2(nd)

1
p
− 1

2d
1
2 otherwise

and β =

{√
2(nd)

1
2
− 1
p for p ≥ 2√

2 otherwise
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It can be checked that in both cases the stated bound on αβ holds. �

One way to generate such a nearly-orthonormal basis is by the L2 approximation that we computed
in Section 4. This leads to a fast algorithm, but the dependency on n in this bound precludes a single
application of sampling using the values given because each time we transfer n rows into O(p|12 −

1
p |) rows.

However, note that when p < 4, p|12 −
1
p | = |1−

p
2 | < 1. This means it can be used as a reduction step in

an iterative algorithm where the number of rows will decrease geometrically. Therefore, we can use this
process as a reduction routine. For inductive purposes, we will also state the routine to compute the basis
via. an approximation of A, Ã. Pseudocode of our reduction algorithm is given in Algorithm 2.

Algorithm 2 Reduction Step for Preserving `p Norm

ReduceP(A, Ã, ε)

Input: n× d matrix A and its approximated matrix Ã, p-norm and error parameter ε
Output: Matrix B

1: A↓← RowCombine(Ã, p, 1/3, d−c−1)
2: Perform SVD on A↓TA↓ and then construct C by dropping the zero singular values and corresponding

singular vectors such that CTC = (A↓TA↓)†

3: if 1 ≤ p ≤ 2 then

4: α←
√

2(nd)
1
p
− 1

2d
1
2 , β ←

√
2

5: else
6: α←

√
2d

1
2 , β ←

√
2(nd)

1
2
− 1
p

7: end if
8: B← EstimeAndSampleP(A,C, 2α, 2β, p, d

θ
2p , ε)

9: return B

Lemma 5.6 For any constant c, there exist a setting of constants in ReduceP such that if A and Ã
satisfy

1

2
‖Ax‖p ≤

∥∥∥Ãx
∥∥∥
p
≤ 3

2
‖Ax‖p ∀x ∈ Rd

and Ã has ñ rows, then ReduceP(A, Ã, ε) returns in O(nnz(A) log d+ θ + dω+θ log d) time a matrix B
such that with probability at least 1− d−c:

(1− ε) ‖Ax‖p ≤ ‖Bx‖p ≤ (1 + ε) ‖Ax‖p ∀x ∈ Rd

And the number of rows in B can be bounded by:{
O(n1−

p
2 d2+θε−2) if 1 ≤ p ≤ 2

O(n
p
2
−1d

3
2
p−1+θε−2) if 2 ≤ p

The proof will be in two steps: we first show that ÃC is a well-conditioned basis for Ã, and use the
following Lemma to show that this implies that AC is a well-conditioned basis for A.

Lemma 5.7 If A and Ã are such that for all x ∈ Rd, 1
2 ‖Ax‖p ≤ ‖Ãx‖p ≤ 3

2 ‖Ax‖p, and C is such that

Ũ = ÃC is an (α, β, p)-well-conditioned basis for A, then AC is also an (2α, 2β, p)-well-conditioned basis
for A.
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Proof It suffices to verify both conditions of Definition 5.2 holds for U = AC. For |||U|||p, we can treat

its pth power as a summation over the columns of U and get:

|||U|||pp =
d∑
j=1

‖U∗j‖pp =
d∑
j=1

‖AC∗j‖pp

≤
d∑
j=1

2p
∥∥∥ÃC∗j

∥∥∥p
p

(by assumption
1

2
‖Ax‖p ≤ ‖Ãx‖p)

= 2p
∣∣∣∣∣∣∣∣∣Ũ∣∣∣∣∣∣∣∣∣p

p
= 2pαp

The other condition can be obtained by direct substitution. By the condition given, we have that for all
z ∈ Rd:

‖z‖q ≤ β
∥∥∥Ũz

∥∥∥
p

= β
∥∥∥ÃCz

∥∥∥
p

Applying the fact that ‖Ax‖p ≤ 2‖Ãx‖p to the vector Cz gives:

‖z‖q ≤ β(2 ‖ACz‖p) = 2β ‖Uz‖p

�

Proof of Lemma 5.6: By the guarantees of RowCombineL2 given in Theorem 4.14, we can set its
constants so that with probability at least 1− d−c′ we have:

1

2
ÃT Ã � A↓TA↓ � 3

2
ÃT Ã.

As CTC = (A↓TA↓)†, then the condition of Lemma 5.5 is satisfied, so ÃC is a well-conditioned basis of Ã.
Furthermore, by Lemma 5.7, AC is also a well-conditioned basis of A. The guarantees for B then follows
from Lemma 5.4. The probability can be obtained by a simply union bound with c′ = c+ log 2. �

Iterating this reduction routine with Ã = A gives a way to reduce the row count from n to poly(d)
in O(log log(n/d)) iterations when p < 4. Two issues remain: the approximation errors will accumulate
across the iterations, and it’s rather difficult (although possible if additional factors of d are lost) to bound
the reductions of non-zeros since different rows may have different numbers of them. We will address these
two issues systematically before giving our complete algorithm.

The only situation where a large decrease in the number of rows does not significantly decrease the
overall number of non-zeros is when most of the non-zeros are in a few rows. A simple way to get around
this is to ‘bucket’ the rows of A by their number of non-zeros, and compute poly(d) sized samples of each
bucket separately. This incurs an extra factor of log d in the final number of rows, but ensures a geometric
reduction in problem sizes as we iterate.

The error buildup can in turn be addressed by sampling on the rows of the initial A using the latest
approximation for it Ã. However, since the algorithm can take up to O(log d) iterations, we need to
perform this on a reduced version of A instead to obtain a O(nnz(A)) running time. Pseudocode of our
algorithm for a single partition where the number of non-zeros in each row are within a constant factor of
each other is given in Algorithm 3.

Lemma 5.8 For any c, there is a setting of constants in RowSample such that given a matrix A where
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Algorithm 3 Algorithm for Producing Row Sample of Size poly(d) that Preserves `p-norm

RowSampleP(A, p, ε, δ)

Input: n× d matrix A, p, error parameter ε, failure probability δ = d−c

Output: Matrix B

1: if 1 ≤ p ≤ 2 then

2: n∗ ← O(d
4
p
+θ

log
2
p d)

3: else
4: n∗ ← O(d

3
2
p−1+θ log

3p−2
4−p d)

5: end if
6: if A has n∗ or fewer rows then
7: return A
8: end if
9: Ã0, Ã← ReduceP(A,A, 1/5)

10: while Ã has more than n̄ rows do
11: Ã← ReduceP(Ã0, Ã, 1/5)
12: end while
13: B← ReduceP(A, Ã, ε/2)
14: return B

each row has between [s, 2s] nonzeros and p < 4. RowSampleP(A, p, ε) with probability 1 − d−c returns
in O(nnz(A) + dω log d) time a matrix B such that:

(1− ε) ‖Ax‖p ≤ ‖Bx‖p ≤ (1 + ε) ‖Ax‖p

And the number of rows in B can be bounded by{
O(d

4
p
+θ
ε−2) if 1 ≤ p ≤ 2

O(d
3
2
p−1+θε−2) if 2 ≤ p ≤ 4

Proof For correctness, we can show by induction that as long as all calls to ReduceP succeeds,∣∣∣∣∥∥∥Ã0x
∥∥∥
p
−
∥∥∥Ãx

∥∥∥
p

∣∣∣∣ ≤ 1/5
∥∥∥Ã0x

∥∥∥
p

for all x ∈ Rd. This can be combined with the guarantee between

A and Ã to give:

∣∣∣∣‖Ax‖p −
∥∥∥Ãx

∥∥∥
p

∣∣∣∣ ≤ 1/2 ‖Ax‖p for all x ∈ Rd, which allows us to obtain the bound on

B. The analysis below shows that there can be at most O(log d) calls to ReduceP, so calling each with
success probability at least 1− d−c−2 gives an overall success probability of at least 1− d−c−1.

To bound the runtime, we first show that if B has nb rows, then in the next iteration the number of
rows in B can be bounded by (nb/n∗)cpn∗ where cp < 1 is a constant based on p. When 1 ≤ p ≤ 2,
Lemma 5.6 gives that there exist some constant c0 such that the new row count can be bounded by:

c0n
1− p

2
b d2+θ log(d) = (nbc

− 2
p

0 d
− 4
p
− 2θ
p log

− 2
p d)1−

p
2 c

2
p

0 d
4
p
+ 2θ
p log

2
p d

So n∗ = c
2
p

0 d
4
p
+O(θ)

log
2
p d and cp = 1− p

2 suffices. Similarly for the case where 2 ≤ p, it can be checked that

n∗ = c
2

4−p
0 d

3p−2
4−p +O(θ)

log
2

4−p d

18



Gives that the new row count can be bounded by (nb/n
∗)cpn∗ where cp = p

2 − 1. As we can set θ to any
arbitrary constant, the constant in front of its exponent can also be removed.

Therefore in O(logc−1
p

(log(n/n∗)) = O(log log n) iterations the number of rows in B decreases below 2n∗.

Also, the number of rows in Ã is at most (n/n∗)cpn∗ = n(n/n∗)cp−1. This means the total cost to obtain
the final B can be bounded by O(nnz(A) + (nnz(A)(n/n∗)cp−1 + dω+θ log(n/n∗))) Since log t ≤ O(t1−cp),
the first two terms can be bounded by O(nnz(A)). The overall runtime bound then follows by applying
Lemma 5.6 to the final call of ReduceP.

�

5.2 Fewer Rows by Iterating Again

A closer look at the proof of Lemma 5.8 shows that a significant increase in the number of rows comes from
dividing by the 1− |1− p

2 | term in the exponent of n. As a result, the row count can be further reduced if
the leverage scores are computed via. a p′-norm approximation where q is between 2 and p. For simplicity
we only show this improvement for the case where 1 ≤ p ≤ p′ ≤ 2.

We will start by proving a generalization of Lemma 5.5.

Lemma 5.9 If A has rank r, 1 ≤ p ≤ p′ ≤ 2, and Ã is a matrix with ñ rows such that for all vectors x

we have 1
2 ‖Ax‖q ≤

∥∥∥Ãx
∥∥∥
q
≤ 3

2 ‖Ax‖q, and C is a d× r matrix such that 1
2(ÃT Ã)† � CCT � 3

2(ÃT Ã)†,

then U = AC is a (α, β, p)-well-conditioned basis for A where αβ ≤ O(n
1
p
− 1
p′ ñ

1
p′−

1
2d

1
p ).

Proof Let Ũ = ÃC. Similar to the proof of Lemma 5.5, we have
∣∣∣∣∣∣∣∣∣Ũ∣∣∣∣∣∣∣∣∣

2
≤
√

2d, and ‖x‖2 ≤
√

2
∥∥∥Ũx

∥∥∥
2

for any vector x. Once again, let q be the dual norm for p such that 1
p + 1

q = 1.
We have:

|||AC|||p ≤ (nd)
1
p
− 1
p′ |||AC|||p′

≤ (nd)
1
p
− 1
p′

(
3/2
∣∣∣∣∣∣∣∣∣ÃC

∣∣∣∣∣∣∣∣∣
p′

)
≤ 3/2(nd)

1
p
− 1
p′ (ñd)

1
p′−

1
2

∣∣∣∣∣∣∣∣∣ÃC
∣∣∣∣∣∣∣∣∣

2

Which gives α = O(n
1
p
− 1
p′ ñ

1
p′−

1
2d

1
p ). Also,

‖x‖q ≤ ‖x‖2 ≤ 2
∥∥∥ÃCx

∥∥∥
2
≤ 3 ‖ACx‖p′ ≤ 3 ‖ACx‖p

Which gives β = O(1).
�

This allows us to compute leverage scores via. a `p′-norm approximation. By Lemma 5.8, such a matrix

has ñ = O(d
4
p′ log

2
p′ d) rows. By Lemma 5.4, the resulting number of rows can be bounded by:

O
((
n

1
p
− 1
p′ ñ

1
p′−

1
2d

1
pR
)p
d log d

)
= O

(
n
1− p

p′
(
d

4
p′ log

2
p′ d
) p
p′−

p
2
Rpd2 log

2p
p′ +1

d

)

This leads to a result analogous to Lemma 5.6. Solving for the fixed point of this process allows us to
prove Theorem 2.2.
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Proof of Theorem 2.2: Similar to the proof of Lemma 5.8, in each iteration we reduce the number of

rows from n to O

(
n
1− p

p′
(
d

4
p′ log

2
p′ d
) p
p′−

p
2
Rpd2 log

2p
p′ +1

d

)
. Ignoring terms in R and log d, we have that

the number of rows converges doubly exponentially towards:

((
d

4
p′
) p
p′−

p
2
d2
) p′

p

= d
4
p′−2+2 p

′
p = d

4
p′+2p′−2

This is minimized when p′ =
√

2, giving 4
p′ + 2p′ − 2 = 4

√
2− 2. As we can set R = dO(θ), the number of

rows in B can be bounded by O(d4
√
2−2+θ) for any constant θ. �

This method can be used to reduce the number of rows for all values of 1 ≤ p ≤ 2. A calculation

similar to the above proof leads to a row count of O(d

√
8
p
−2

). However, using three or more steps does not
lead to a significantly better bound since we can only obtain samples with about d rows when p = 2. For
p ≥ 4, multiple steps of this approach also allows us to compute poly(d) sized samples for any value of p.
We omit this extension as it leads to a significantly higher row count.
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ACM. 1

A Properties and Estimation of Stretch and Leverage Scores

A.1 Properties of Generalized Stretch

We now give proofs for estimating leverage scores and row sampling that we stated in Sections 4 and 5.

Proof of Fact 4.2:

n∑
i=1

STRA(ai) =
n∑
i=1

ai(A
TA)†aTi

=
n∑
i=1

tr
[
(ATA)†aTi ai

]
= tr

[
(ATA)†

n∑
i=1

aTi ai

]
= tr

[
(ATA)†ATA

]
= r (1.4)

�

Proof of Fact 4.4: Note that both stretch and the Frobenius norm acts on the rows independently.
Therefore it suffices to prove this when A′ has a single row, aka. A′ = a. In this case the cyclic property
of trace gives:

STRA(a) = a(ATA)†aT

= a(ATA)†1/2(ATA)†1/2aT

=
∥∥∥A†1/2aT∥∥∥2

2
(1.5)

�

Proof of Lemma 4.3: The condition given implies that the null spaces of BT
1 B1 and BT

2 B2 are
identical, giving:

(BT
1 B1)

† � (BT
2 B2)

† � κ(BT
1 B1)

† (1.6)
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Applying this to the vector x gives:

x(BT
1 B1)

†xT ≤x(BT
2 B2)

†xT ≤ κx(BT
1 B1)

†xT (1.7)

�

A.2 Estimation of Generalized Stretch

Based on this fact, we can estimate these scores using randomized projections in a way that’s by now
standard [SS08, DMIMW12]. Pseudocode of our estimation algorithm is shown in Algorithm 4, while the
error analysis is nearly identical to the ones given in Section 4 of [SS08] and Section 3.2. of [DMIMW12].

Algorithm 4 Algorithm for Upper Bounding Stretch

ApproxStr(A,B, κ,R)

Input: A n × d matrix A, approximation m × d matrix B such that 1
κATA � BTB � ATA, parameter

R ≥ e2 indicating allowed estimation error.
Output: Upper bounds for stretches of rows of A measured τ̃1 . . . τ̃n.

Compute C = (BTB)†
1
2

Let k = O(logR(1/δ))
Let U be a k × d matrix with each entry is picked independently from N (0, 1)

Let τ̃i = R
d

∥∥UCaTi
∥∥2
2
.

return τ̃

We remark that (BTB)†
1
2 can be replaced by any matrix whose product with its transpose equals to

BTB. nee candidate for this is B(BTB)†, and using it would avoid computing the 1/2 power of a matrix.
However, from a theoretical point of view both of these operations take O(mdω−1) time, and we omit this
extra step for simplicity.

Proof of Lemma 4.6:

Since BTB � ATA by assumption, then
(
ATA

)† � (BTB
)†

. Denote by τ ′i = STRB(ai) = ai
(
BTB

)†
aTi ,

note that τi = STRA(ai) = ai
(
ATA

)†
aTi , we have τ ′i ≥ τi. Next we show u τ̃i ≥ τ ′i holds with large prob-

ability. By Lemma 4.5 Part 3 we have:

Pr
[
τ̃i ≤ τ ′i

]
= Pr

[
1

k

∥∥UCaTi
∥∥2
2
≤ 1

R

∥∥CaTi
∥∥2
2

]
≤ exp

(
k

2
(1−R−1 − lnR))

)
≤ exp

(
−k

2

lnR

2

)
= R−

k
4 ,

where the last inequality is due to the assumption that R ≤ e2. By a suitable choice of constants in
k = O(logR nd

c) = O(logR d) this can be made the above probability less than n−1d−c, taking a union
bound over the n rows gives Part 1.

The upper bound on ‖τ̃‖1 can be obtained similarly. From Lemma 4.3, we have τ ′i ≤ κτi holds for all
i. Then using Part 2 of Lemma 4.5:
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Pr
[
τ̃i ≥ R2τ ′i

]
= Pr

[
1

k

∥∥UCaTi
∥∥2
2
≥ R

∥∥CaTi
∥∥2
2

]
≤ exp

(
k

2
(1−R+ lnR)

)
≤ exp

(
−k

2
lnR

)
= R−

k
2 ,

the last inequality is due to the fact that R − 2 lnR increases w.r.t. R and R − 2 lnR ≥ 1 holds when
R = e2. The above probability will be less than n−1d−c if choosing the same constants k as before. Then
‖τ̃‖1 ≤ R2‖τ ′‖1 holds with probability at least 1− d−c. Together with ‖τ ′‖1 ≤ κ‖τ‖1, then we obtain the
upper bound of ‖τ̃‖1.

It remains to bound the running time of LeverageUpper. Finding BTB takes O(nbd
ω−1) time,

while inverting it takes an additional dω time. Computing UC can be done in O(kd2) time, and it
It remains to evaluate UCaTi for all rows i. This can be done by summing nnz(ai) length k vectors,
giving a total of nnz(A)k over all n vectors. Therefore the total cost for computing the estimates is
O(k(nnz(A) + d2) + (nb + d)dω−1). �

A.3 Estimation of p-Norm Leverage Scores

We will estimate the values of ‖Ui∗‖p using similar dimensionality reduction theorems. Specifically, we
utilize a result on p-stable distributions first shown by Indyk [Ind06].

Lemma A.1 (Theorem 4 of [Ind06]) For any p ∈ (0, 2), any c and any error factor R, there exist a
d × O(logR d) matrix Π such that for any vector z ∈ Rd, we can obtain estimates τ̃i such that with
probability 1− d−c:

1

R
‖z‖p ≤ τ̃i ≤ Rτ̃i

Note that the result from [Ind06] was only stated in terms of obtaining 1 ± ε approximations, which
leads to a factor of log d on the leading term. However, these bounds can be obtained analogously by the
fact that p-stable distributions have bounded derivative.

We can now apply this projection matrix to AC and examine the rows of ACΠT , which can in turn
be computed in O(nnz(A) logR d) time. We can no longer use these projections when p ≥ 2. As a result,
we will instead use the L2 norm as an estimate and apply the random projection given in Lemma 4.5.

Fact 5.1 gives that this leads to an extra distortion by a factor of O(d
(| 1

2
− 1
p
|)p

) = O(d
p
2
−1). This distortion

can be accounted for in the number of rows returned. Pseudocode of this estimation and sampling routine
is given in Algorithm 5

Proof of Lemma 5.4: Applying a union bound over the n = poly(d) rows of A gives that with
probability at least 1− d−c−1, we have:

‖ACi∗‖pp ≤ R
pτ̃(p)i

τ̃(p)i ≤ Rp ‖ACi∗‖pp
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Algorithm 5 Leverage Estimation and Sampling Routine for p-norm

EstimateAndSampleP(A,C, α, β, p, ε)

Input: n× d matrix A, C such that AC is a (α, β, p) well-conditioned basis for A projection error R, and
output error ε
Output: Matrix B

1: Compute projection matrix Π ∈ RO(logR d)×d

2: Compute d× d1 matrix CΠT

3: Compute estimates of τ̃(p)i from the rows of A(CΠT )

4: Compute probabilities pi = O
(
R2p(αβ)p τ̃(p)i∑

i τ̃(p)i

)
5: return Sample(A, p, ε)

Therefore we have:

R2p τ̃(p)i∑
i τ̃(p)i

≥
‖AC‖pp∑

i τ̃i
≥

‖AC‖pp∑
i ‖ACi∗‖pp

The guarantees on the output then follows from computing Lemma 5.3, while the total running time follows
from the cost of evaluating A(CΠT ). �

B Deferred Proofs from Section 4

Proof of Lemma 4.8: Let C =
(
ATA

)† 1
2 , by Fact 4.4 we have that: STRA(A(b)) = ‖A(b)C‖2F and

STRA(A↓(b)) = ‖A↓(b)C‖2F . Furthermore, since A↓(b) = U(b)A(b), we have:

STRA(A↓(b)) = ‖U(b)A(b)C‖2F

Next we upper bound this term by using similar technology from the proof of Lemma 4.6. Let yi be
the i-th column of A(b)C. As the entries of U(b) are independent standard Gaussian random variables, it

is easy to see that E
[∥∥U(b)yi

∥∥2
2

]
= k ‖yi‖22 for any i. By Lemma 4.5, we have that:

Pr

(
‖U(b)yi‖22 ≤

k

R
‖yi‖22

)
≤ exp

(
k

2

(
1−R−1 − lnR

))
≤ R−

k
4

Where the last inequality is by 1 − R−1 − lnR ≤ −1
2 lnR with the assumption that R ≥ e2. If we k to

4(c+ 1)θ−1 logd n and substitute R = dθ, we get:

R−
k
4 ≤ d−

kθ
4 = d−c−1n−1.

Using the union bound, we have

Pr

[
STRA(A↓(b)) ≤

k

R
STRA(A(b))

]
= Pr

[
d∑
i=1

‖U(b)yi‖22 ≤
d∑
i=1

k

R
‖yi‖22

]
≤ d−cn−1

Apply the union bound again, the above holds for all b = 1, . . . , nb with probability at most d−c. By the
assumption that n = poly(d), k = O(c/θ) suffices. �

Proof of Lemma 4.9: By definition we have A↓(b) = U(b)A(b). Let x be any vector in Rd, we first
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have

‖U(b)x‖22 ≤ ‖U(b)‖22‖x‖22 ≤ ‖U(b)‖2F ‖x‖22

and then

xTA↓T(b)A↓(b)x = ‖A↓(b)x‖22
= ‖U(b)A(b)x‖22
≤ ‖U(b)‖2F ‖A(b)x‖22
= ‖U(b)‖2F · xTAT

(b)A(b)x

�

Proof of Lemma 4.10: Consider an orthonormal basis for the range space of C, v1 . . .vrank(C). Since
C + D � C, this basis can be extended to an orthonormal basis to the range space of C + D by adding
vrank(C)+1 . . .vrank(C+D). It suffices to prove the claim under this basis system. Here C and D can be
rewritten as by proper rotation:

C =

[
C11 0

0 0

]
and D =

[
D11 D12

DT
12 D22

]
,

where C11 and D22 are strictly positive definite. Furthermore, since D is positive semi-definite we have
that D11−D12D

−1
22 DT

12 is also positive semi-definite. For any vector x, PCx gives a vector that’s non-zero
only in the first rank(C) entries. Let this part be x1. Then evaluating (C + D)†PCx = [y1; y2] becomes
solving the following system:

(C11 + D11)y1 + D12y2 = x1

DT
12y1 + D22y2 = 0

The second equation gives y2 = −D−122 DT
12y1. Substituting it into the first one gives:(

C11 + D11 −D12D
−1
22 DT

12

)
y1 = x1

Note that this is the same as taking the partial Cholesky factorization onto the range space of PC.
Combining things gives:

xTPC(C + D)†PCx = xT1 (C11 + D11 −D12D
−1
22 DT

12)
−1x1

Since both D11 −D12D
−1
22 DT

12 and D11 are positive definite, we have C11 � C + D11 −D12D
−1
22 DT

12 and
therefore:

xTPC(C + D)†2PCx = xT1 (C11 + D11 −D12D
−1
22 DT

12)x
T
1

≤ xT1 C−111 xT1

= xTPCC+PCx

holds for every x. �
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