
NVM Heaps for Accelerating Browser-based Applications

Abstract

The growth in browser-based computations is raising the
need for efficient local storage for browser-based appli-
cations. A standard approach to control how such appli-
cations access and manipulate the underlying platform
resources, is to run in-browser applications in a sandbox
environment. Sandboxing works by static code analysis
and system call interception, and as a result, the perfor-
mance of browser applications making frequent I/O calls
can be severely impacted. To address this, we explore the
utility of next generation non-volatile memories (NVM)
in client platforms. By using NVM as virtual memory,
and integrating NVM support for browser applications
with byte addressable I/O interfaces, our approach shows
up to 3.5x reduction in sandboxing cost and around 3x re-
duction in serialization overheads for browser based ap-
plications, and improved application performance.

1 Introduction

Browsers have become an indispensable computing plat-
form for client devices, ranging from cell phones, lap-
tops, tablets, and desktops, not just for web browsing,
but rather a complete computing framework. Browser
capabilities in support of rich in-browser services are
increasing at a rapid pace, including by providing di-
rect access to the underlying hardware and accelerators.
For instance, the HTML5 Web Workers standard allows
JavaScripts to exploit thread level parallelism in multi
cores, and the WebGL APIs allow applications to uti-
lize GPUs and access to other multimedia devices. With
growing computing needs, large data access and storage
needs have also increased, and fetching data from net-
work is time consuming.

For performance reasons, however, recent popular
runtimes like HTML5, Java Scripts, and Google Na-
tive Client (NaCl), have started supporting direct I/O ac-
cess to web applications. The local storage interface for

browsers [1] exists in multiple forms like (1) simple key
value store, (2) JavaScript (JS) based ‘sqlite’ interface,
(3) synchronous and asynchronous POSIX I/O interfaces
for storage of large blobs of data. All of the above meth-
ods are compatible across different browsers but are lim-
ited by JS and dynamic compilation bottleneck. Other
state of the art methods like Google’s NaCl, support
richer applications written in native languages (C, C++)
that are 4-5x [24] faster than JS. Similar progress in re-
ducing JS overheads has been made in the Firefox com-
munity via the asm.js [2] project.

While such features provide web applications with
greater flexibility and performance in how they access
and store data, a key challenge with of all the above
methods is that access to underlying storage resource
can leave the system in vulnerable state due to security
threats. A commonly used solution to overcome secu-
rity vulnerabilities involves isolation between web appli-
cations such that each web page instance has an exclu-
sive access to its state, and does not share persistent data.
Further, the untrusted web applications are completely
isolated from the trusted browser framework and under-
lying OS by ‘sandboxing’ [22, 20, 24]. Sandboxing en-
ables secured access to system resources like memory,
network, and storage, by intercepting applications’ ac-
cess (system calls) to these resources (i.e., system call
interception). apart from static analysis. While sandbox-
ing is important, as a side effect, they increase system
resource access (system call) cost. Specifically for re-
sources with software controlled access, the impact of
sandboxing is higher. For instance, with storage devices,
frequent I/O calls can substantially increase I/O latency
and reduce throughput, such that sandboxing becomes a
dominant cost, irrespective of the underlying storage de-
vice used. In addition, due to current block based storage
interface, the impact of necessary data serialization (be-
fore writing to storage device), and deserialization (re-
trieving data from storage) in a sandboxed environment
further degrades application runtime.

jdigney
Typewritten Text

jdigney
Text Box
Sudarsan Kannan, Ada Gavrilvoska, and Karsten SchwanGeorgia Institute of Technology

jdigney
Text Box
Workshop on Interactions of NVM/Flash with Operating-Systems and Workloads (INFLOW’13), with SOSP’13, November 2013.

Hence a key principle in reducing sandboxing cost is
to reduce the software intercepted resource access with-
out compromising the protection features of sandboxing.
We use this principle, by proposing to use next genera-
tion storage class nonvolatile memory (NVM) like PCM,
as a virtual memory (VM) [21, 12] as opposed to a block
based device, and exploit the hardware controlled virtual
memory based isolation between applications. By using
a VM based interface, coupled with features like page
protection, each web application is restricted/ isolated to
access its own state. This avoids a substantial number of
sandboxing interceptions (for example, intercepting ev-
ery read/write call), and hence, reduces the overall re-
source access latency critical for end user devices.

To realize the benefit of our proposal, we use the
well known Google Chrome-based Native Client (NaCl)
framework. With NaCl, applications run as a browser
extension across client devices supporting major OSs,
like (Windows, Linux,Mac, ChromeOS). We refer to the
NaCl framework as ‘state-of-art’, because NaCl applica-
tions are approximately 200% faster than their HTML5
JS counterparts, and compute intensive NaCl applica-
tions developed in C, C++ experience less than 5%
overhead relative their native alternatives. We provide
NVM support for browsers by emulating DRAM as PCM
which are not yet commercially available.

The technical contributions of this work include:
• Analysis of browser I/O performance:We ana-

lyze the impact of sandboxing and serialization on
browser I/O performance for the state of the art
NaCl and the commonly used HTML5 I/O inter-
face.

• NVM heap interface to improve I/O:We propose a
browser framework that uses NVM as a persistent
heap to reduce the sandboxing and serialization im-
pact on I/O performance.

• Evaluation of applications and benchmarks:We
implement and evaluate our approach in the well
known NaCl framework using representative bench-
marks, demonstrate reduction of sanboxing and se-
rialization cost, and improved performance. Our
analysis applies to JS based sanboxing too with per
webpage sandbox.

2 Motivation and Background

I/O in browsers. I/O capabilities for in-browser
web applications have existed for a while, with every
browser supporting a customized application interface.
Recent HTML5 standardization efforts, however, pro-
vide several I/O and data storage interfaces. First, there
are the traditional application transparent and explicit
browser caching which have been extensively studied in
the past [23, 18]. Other important forms include a simple

key value store used for storing user personalization in-
formation. More structured data, that includes metadata
storage of browser cache, browser game states and oth-
ers, use a JavaScript (JS) based ‘sqlite’ interface. Appli-
cations that require storage in blobs, for instance, down-
loading a compressed video file and decompressing it be-
fore playing, use synchronous and asynchronous file sys-
tem interfaces. Other motivating examples include per-
sistent uploader, where a file is to be uploaded is copied
to a sandboxed region of a web application that allows
persistent upload across browser crashes, offline video
viewer with efficient seek capability, ability to prefetch
multimedia assets in the background, audio-video editor
that is supported by offline access of cache, offline web
email clients. Yee et al. [24] discuss an interesting photo
storage application using the NaCl framework to store
and process images.While the need for I/O in browsers
has been increasing, poor I/O performance has contin-
ued to pose significant limitations to web application de-
velopers [6].

Storage access overheads. Recent studies on end
client devices [15] analyzed different end user applica-
tions, smartphones and flash storage devices and con-
cluded that (1) flash storage performance variation across
devices as the main reason for poor application I/O in-
cluding browsers, and that (2) high random writes dom-
inate the I/O cost. Replacing the flash devices with fu-
ture byte addressable nonvolatile memory devices with
100X higher bandwidth and same random vs. sequen-
tial access cost can considerably reduce the impact of (1)
and (2). But to achieve complete latency benefit from
these new types of devices, we need to revisit the de-
vice interface, so as to reduce the software overheads for
data accesses, i.e., reducing the number of indirection
levels before accessing the device, which can dominate
the access latency cost. For instance, in case of Android,
due to the inherent design of the OS and multiple lay-
ers of sandboxing, I/O performance can be substantially
less (simple sqllite row insert test in native and android
showed around 300% slowdown). In other environments,
like ‘state of the art’ NaCl, the indirection happens from
untrusted to trusted region and finally to OS as a system
call. Reducing software interactions, and exploiting the
hardware supported (virtual memory based) data access,
is therefore key to reducing data access cost.

Sandboxing. The key goal of application sandboxing
is to isolate applications from code and data of other ap-
plications by restricting the access to system resources
and to comply with user granted permissions. Sanbox-
ing mechanisms vary across systems, ranging from rule
based executions to virtual machine emulation to static
code profiling. In case of higher level language like
Java, the language constructs and runtime provides the
sandbox (Dalvik VM in case of Android based systems),

2

trusted service
runtime

untrusted components

HTML &
JavaScript

NaCl
(.nexe) app

utility libs

OS

stack/context
switch

SRPC/IMC

context
switch

Untrusted Components

Figure 1: Multiple indirections of syscalls with sandbox

for systems that support native C,C++ languages (NaCl),
a separate sandboxing layer enforces restrictions on in-
structions and system calls that applications can use.But
on a whole, while sanboxing is required to improve se-
curity when running untested and untrusted code, fre-
quent access to system resources can affect performance.
Specifically, access to storage device comes with in-
creased access latency.

Sandboxing in Google Native Client. We next provide
a brief background on sandboxing, and discuss the im-
portance of choice of interface for improving the I/O per-
formance. While we use the Google-based NaCl, other
runtimes also have similar sandboxing cost. The NaCl
framework adapts two levels of sandboxing – inner and
outer sandbox [24]. The inner sandbox provides binary
validation by using static analysis and restricts unsafe
instructions. As most analysis is done statistically, the
inner sandbox has less impact on application runtime
whereas for outer sandboxing, untrusted applications’
use system call wrappers and are intercepted by a trusted
region. Similar to context switches between user and ker-
nel level, control transfers happen between untrusted and
trusted regions using springboard and trampoline tech-
niques, making a system call highly expensive compared
to general applications. For browser-based I/O, NaCl
uses the HTML5 compatible Pepper library and memory
access by untrusted applications is restricted to a specific
address range using page protection mechanism and any
region can be expanded/shrunk by registering it with the
NaCl runtime. The runtime maintains a per process (an
untrusted application) address table mapping containing
the address range and access permissions, and registered
address regions do not incur access sandboxing costs,
but rather leverage the hardware support for illegal ac-
cess protection. This is in contrast to file system opera-
tions, where every I/O syscall needs to trap.Frequent I/O
calls by applications cause severe I/O and bandwidth im-
pact irrespective of the underlying physical device (e.g.,
NVM, RAMDisk, or SSD), which makes such file system
calls highly unsuitable in browser-based environments.

To understand the importance of choice of interface,
we did a simple test using NaCl. Figure 2 shows a sim-
ple benchmark demonstrating the I/O performance issue

0

2000

4000

6000

8000

10000

12000

14000

Bytes writ ten

T
im

e
(m

ic
ro

 s
ec

)

Browser I/O vs. Native I/O

Native

Browser
Write chunk size - 512

bytes

Figure 2: Sandboxing Impact on IO performance

Figure 3: Design

in browsers, comparing the browser-based with the na-
tive execution of a simple benchmark that opens a file,
writes data to it in chunks of 512 bytes, and then closes
it. There is a large increase in I/O time for the browser
case, attributed to the fact that with increasing numbers
of I/O calls, sandboxing overheads also increase. Using
the existing memory map (mmap) system call interface
when dealing with few large files can reduce sandbox-
ing impact, but when the number of files that need to be
mapped and un-mapped is high (for instance compress-
ing all image files in a directory by mmaping them),
the overall system call, user-kernel context switching can
negate the memory map gains as shown in our evaluation
section (see Sec. 4).

Serialization in Sanboxed Environments. Serializa-
tion is a well known method of converting in-memory
data structures to a sequential persistent data format and
deserialization is the inverse operation. Serialization re-
sults in additional I/O system calls primarily in the form
of seeks and writes/reads to write data to persistent stor-
age. In the case of sanboxed environments, the cost of
serialization impact is substantially higher due to addi-
tional system call interception.Providing applications
with a non volatile heap based interface can avoid seri-
alization/deserialization across I/O data access, by stor-
ing and loading data structures exactly in the way they
are stored in memory.

3

//storing to NV Heap
Image**imgdb = nvmalloc(³LPJBURRW³�size);
 for each new image:
 Image *imgdb[cnt]= nvmalloc(size, NULL);
 FQW�����««
//reading from NV Heap
 img = nvread (³img_root³�	VL]H);
//implicit load of all child ptrs

Figure 4: Programming Model
3 Design

I/O calls in sanboxed environment transition from un-
trusted to trusted to privileged (kernel) layers. Our de-
sign reduces the multiple levels of software redirections
for I/O calls, by relying on fast hardware based page
access for persistent storage. We achieve this by ex-
ploiting the byte addressability and hardware-supported
page-based memory management and protection tech-
niques for NVMs. Applications allocate persistent re-
gions of NVM similar to a heap, and instead of file
system reads and writes, perform load and store oper-
ations to the persistent regions. Key differences with
prior work [21] includes NVM support for and several
optimizations specific to persistent browser applications
in sandboxed environment and a virtual memory based
NVM kernel manager compared to the file buffer cache
extensions in prior work.

3.1 OS Support

To integrate NVM at OS level, it is represented as a spe-
cial node in a heterogeneous memory system. We lever-
age OS-level NUMA support, by configuring a NUMA
memory node as NVM during system boot. To manage
the NVM node, we have developed a custom NVM man-
ager by extending the Linux memory management which
controls allocation, deallocation and persistent metadata
structure maintenance in the kernel layer. Each pro-
cess has a persistent page tree which is loaded from per-
sistent storage (SSD currently) during process launch.
Each process uses a unique identifier to load its persis-
tent pages in its address space. The NVM manager pro-
vides persistent NVM allocations using the ’nvmmap’,
’nvunmmap’ system call, generally used by the alloca-
tor. The mmap call results in creation of a virtual mem-
ory area (VMA) structure containing several pages. The
kernel internally maintains persistent per process ker-
nel data structures, which contains a tree of VMA and
each VMA contains a tree of page for supporting appli-
cations across restarts. To emulate application session
level persistence, we prevent the OS from swapping per-
sistent pages allocated by NVM manger and use SSD for
storing kernel structures and data pages for persistence
across reboots. A key feature specific to browsers is the
support for compartments, where the browser framework

can request from the OS an isolated VMA (virtual mem-
ory area structure) through mmap, for avoiding access to
a memory region by multiple untrusted browser worker
threads. To the user level applications, a compartment
is just a region of memory reserved through the mmap
call, and the OS manager avoids merging such VMAs by
tagging VMAs with their thread id. This allows mul-
tithreaded applications like browsers to partition their
memory based on the isolation requirements [3]. Further,
data consistency guarantees for NVM writes are satis-
fied by fencing and flushing cache lines. We are also
currently designing several end user device specific OS
optimizations including memory allocation policies and
transactional mechanisms, and our future work will dis-
cuss them in detail.

3.2 NVM Support for Sandboxed
Browsers

Our design consists of a user-level library to allow NaCl
browser applications to explicitly allocate and access
peristent data in NVM. The NaCl framework categorizes
the runtime into trusted and untrusted components (see
Figure 3). The trusted region implements protection; it is
responsible for providing all system resource references
and handles, along with system call interception. The
untrusted region provides the user level interfaces, to the
NaCl applications finally intercepted by the trusted run-
time. Since the two regions maintain separate stacks, a
call from the untrusted to trusted region results in ex-
pensive stack switching. To avoid such costs, applica-
tion level resource management can be done in the un-
trusted region after getting resource reference. For in-
stance, user level memory allocator like ‘dlmalloc’ can
be implemented in the untrusted region, and the refer-
ence of memory address using the sbrk()/mmap() call
can be obtained from the trusted region. To match this
division of state and functionality across NaCl compo-
nents, we divide our user-level NVM component across
the trusted and untrusted layers of the NaCl library. We
first describe the untrusted NVM component followed by
the trusted component.
Untrusted NVM allocator. The untrusted NVM com-
ponent provides byte addressable interfaces to applica-
tions and implements user-level management of NVM
state. Application allocate persistent chunks using the in-
terfaces offered by untrusted NaCl NVM allocator com-
ponent. The persistent allocator is an extension of the
glibc ”dlmalloc” library similar to other works [12], and
is implemented in the untrusted layer. Figure 4 shows
a simple programming model of how applications allo-
cate (nvmalloc) and access persistent heap(nvread). Per-
sistent pointer handling across restarts is done by well
known pointer swizzling technique. Placing the alloca-

4

tor in the untrusted region, instead of trusted component
avoids substantial stack switching overhead between the
two regions for every application memory allocation call,
but also requires sandboxing specific allocator optimiza-
tions. The implementation is secure because (1) a mmap
based reservation by the allocator and other memory ref-
erences are still obtained via a call to the trusted region,
and (2) any illegal memory address access outside the
registered range of the untrusted application would re-
sult in an application exception. The allocator maintains
a log of process level persistent allocations, and the log
is used on restarts to locate allocations from pevious ses-
sion. An allocated chunk can be located at any offset of
a compartment (mmap’ed region), but every chunk con-
sists of metadata maintaining detail about its parent com-
partment as well as an offset within the compartment. All
metadata is maintained in persistent memory.

Sandboxing specific allocator optimizations. Most
optimizations revolve around reducing frequent use of
the system calls in the allocator (e.g., sbrk(), map, un-
map, etc.), as this can negate the benefits over a POSIX
I/O interface. Two key optimizations include (1) al-
locator memory reservation size, and (2) dividing the
memory reservations among multiple threads. Regard-
ing (1), allocators generally use mmap/sbrk to reserve
a few pages (dlmalloc uses OS pagesize) of memory,
try to fit in application allocations in the reserved re-
gions, and when the reserved region is insufficient, in-
voke a mmap/sbrk call again. For applications requiring
large persistent storage needs, this can result in a sub-
stantial number of system calls (and hence sandboxing
overheads). To avoid this, applications provides a hint
to the allocator for making larger reservations, (maxi-
mum of 16 MB), with default reservations of 4MB. (2)
making large reservations in multithreaded applications
can be dangerous. To avoid this, we divide the appli-
cation reservations into thread level compartments dis-
cussed earlier [3].

Trusted NVM component. The trusted NVM com-
ponent is a thin layer responsible for providing (1) an
indirect access to the system level NVM interfaces like
’nvmmap’, for allocating and accessing persistent re-
gions, (2) maintaining per application persistent NVM
access region table with different protection levels, and
(3) handling out of bound access protection faults. Ev-
ery untrusted application registers a unique key with the
trusted region for the first time, and the same key is used
across sessions. The unique key registration also cre-
ates a persistent access table for the application (see Fig-
ure 3). After registration, applications use untrusted al-
locators for persistent memory allocation, which invokes
an NVM specific mmap call to the trusted component.
The trusted component checks if the requested memory
reservations are private, and adds the memory address

range to access table. Since the trusted and untrusted
components have separate logical segments and stacks,
after memory allocation, the trusted component converts
the memory reference to the untrusted application ad-
dress range.

Once the NVM address ranges are mapped into the
process address space, the applications are free to ac-
cess any memory address in the range and do not en-
counter sandboxing costs. This provides substantial
performance benefits by reducing the outer sandbox-
ing overheads. Across application (browser application)
restart, the unique keys are used as a unique naming en-
tity for reloading the application access table. Our cur-
rent design relies on the browser application to provide a
unique key and this is similar to sandboxing in Android
framework [9] where each application has a unique key
across sessions. Future work would focus on more appli-
cation transparent key generation.

4 Experiments

In order to investigate the benefits of leveraging the byte
addressability of future non volatile memories in improv-
ing browser application’s I/O performance, we seek to
understand the following. (1) Is the current storage de-
vice performance mainly responsible for the I/O slow-
down in sanboxed environments like browsers? (2) What
is the impact of the choice of storage interface on a san-
boxed environment? (3) What are the benefits of treating
NVMs as a nonvolatile heap as opposed to block storage
device? To answer these questions, we use the browser
based WebShootbench [8] benchmark, and two applica-
tions: Snappy data compression, and an offline content
based email classifier. We next provide details on the ex-
perimental methodology.
Evaluation Methodology. For representing an end user
devices like smartphone, we use a dual core 1.66 GHz
D510 Atom based development kit with 2GB DDR2
DRAM, Intel 520 120GB SSD. For NVM, the I/O in-
terface is replaced with an heap interface (nvmalloc). In
all workloads, for taking into account slow NVM writes
for access that miss the 1MB L2 cache, we use PIN based
binary instrumentation to measure the ratio of load and
stores in the NVM allocated address range, and then use
hardware counters values to estimate the total load/store
misses due to NVM access and use access latency values
from [21]. We observed that for most application except
a hashtable benchmark, the cache misses was less than
1-1.5% as discussed in other work [14].

4.1 Benchmark Analysis

WebShootbench is an open sourceWebshootbenchmark
was originally derived derived from the Computer Lan-

5

Benchmark I/O time(%)

Fasta 41.207

Revcomp 49.33

kNucleotide 12.32

SpellCheck 19.89

Table 1: Time spent on I/O by benchmark apps.

0
2
4
6
8

10
12
14

R
ut

im
e

(s
ec

)

Benchmark Apps.

Figure 5: Benchmark Peformance Comparison

guage Benchmarks Game [4, 8] to compare the speedup
of NaCl vs. JavaScript and we focus just on the work-
loads that depend on I/O. Table 1 shows the I/O vs. com-
pute time on a vanilla Linux Atom platform. To under-
stand the impact of storage device on performance, we
evaluate our experiments in SSD, RamDisk and emulated
NVM.
• Fasta (FS) is a write intensive benchmark that gen-

erates random DNA sequences by weighted ran-
dom selection from a list of predefined sequences,
and writes 3 sequences line-by-line. The number of
‘fwrites’ system calls are substantial

• Revcomp (RC) reads DNA sequences line-by-line
from the output generated by Fasta, and for each se-
quence, writes the id, description, and the reverse-
complement sequence to output. Blocking read
calls dominate the I/O time of the application.

• kNucleotide (KN) reads the DNA sequence from
Fasta’s output line-by-line, generates k-nucleotide
sequences and each k-nucleotide is updated to a
hashtable, with value as count of occurrence. The
I/O time is less than 13% compared to the total com-
pute time (hashing).

• Spell Check (SC) loads popular ’Wordnet’ dictio-
nary files [16] into a hashtable, generates words
from an input file and identifies words that are not in
the dictionary. The dictionary set contains 16 files
each containing its own hashtable. We use four 16
MB input text files.

Benchmark Server Gains(%) Client Gains(%)

Fasta 68.85 73.51

Revcomp 15.84 21.94

kNucleotide 73.27 83.82

SpellCheck 22 26.234

Table 2: NVM gains: server (Sandybridge) vs. client
(Atom)

Figure 1 shows the time spent on I/O by each applica-
tion. To understand the impact of storage device on per-
formance, we perform experiments with SSD, RamDisk
(RD) and NVM (NVM).
Observations Figure 5 compares the use of NVM as
heap with RAMdisk and SSD performance. The appli-
cations generate/access around 64MB of I/O data. (1.)
As expected, NVM with heap shows significant perform
gains (Y-axis shows runtime) in all the benchmarks with
maximum gains for read intensive ’Revcomp’ (3.5X)
and least gains for compute intensive kNucleotide (20%)
and short running spell check application. (2.) An in-
teresting result is that, both RAMdisk and SSD perform
poorly with very little difference between them. This
shows that, irrespective of the storage device, frequent
I/O read/write calls hurts both SSD and RAMDisk which
shows the impact of sandboxing in browser I/O slow-
downs, and (3.) due to sandboxing, even writes that
generally benefit from buffer cache, suffer substantially
with POSIX I/O interface in sandboxed machines. As
exepected, increasing I/O size, resulted in widening gap
between NVM heap and RAMDisk approach (not shown
here for brevity). We also observed that, the speedup
achieved from our NVM based design (compared to
RAMDisk) on the client platform (Atom) to be higher
than the server platforms (Sandybridge) as shown in Ta-
ble. 2. The benchmark runtime was maintained constant
across platforms. This is mainly because, software based
sandboxing requires some processing time, and reducing
such actions in slower cores with our NVM design shows
higher benefits..These observations show that, choice of
interface is critical to I/O performance in browsers apart
from the storage device and using NVM as heaps can
avoid substantial sanboxing cost.

4.2 Application Evaluation

We next evaluate the effectiveness of NVM as heap for
browser I/O using two other applications: (i) a NaCl-
based disk cache compression using Snappy [7], (ii)
Bayesian based offline email classifier. Using Snappy,
we compare the implications of using memory interface
for NVM vs. a POSIX-based block interface or a mem-
ory backed ‘mmap’ interface. With the email classi-
fier, we analyze the serialization/deserilization benefits
of NVM. For the POSIX I/O and mmap interface, we use
RAMDisk based file system (tmpfs) to avoid the storage
device noise.
Snappy Compression. Snappy is a high per-
formance compression/decompression library (shipped
with Chrome source) with preference for speed than
compression size. We ported it to NaCl approx. in 2
hours and use it to compress approximately 500MB of
default browser cache data (3001 files), as shown useful

6

626

14249

208
0

2000

4000

6000

8000

10000

12000

14000

16000

RD posix RD mmap NVM
memory

#.
 o

f C
on

te
xt

 S
wi

tc
he

s/
se

c
Kernel
context
switch

1205

24973

349
0

5000

10000

15000

20000

25000

30000

RD posix RD mmap NVM
memory

#.
 o

f S
ys

te
m

 C
al

ls

System
calls

2923644

1507877
1222314

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

RD posix RD mmap NVM
memory

#.
 o

f S
ta

ck
 S

wi
tc

hi
ng

 C
al

ls

Stack Switching

Figure 6: Snappy Analysis, left fig. compares kernel contextswitches, middle fig shows number of system calls and
right fig. compares untrusted to trusted stack switching.

1509.601
1313.903

567.394

0
200
400
600
800

1000
1200
1400
1600

RD posix RD mmap NVM memory

msec/run

Figure 7: Snappy access interface evaluation

in [24, 10]. The cache consists of binary, text, images
and video files and compression achieves 28% reduc-
tion in disk cache size. The compression/decompression
time is well within the limits of average page load time
(currently around 4-7 seconds). For the POSIX I/O and
’mmap’ based interface, all the cache is in RAMDisk,
whereas for NVM heap, we manually load the cache to
the emulated NVM region with a helper process. We
are currently working on changing the entire cache in-
terface to NVM support, and future work would not re-
quire such helper process. The snappy algorithm loads
the entire file to memory, performs compression and fi-
nally writes to an output file (RAMDisk or NVM). In
case of the ‘mmap’, each file is mapped into memory,
compressed and unmapped, whereas for the POSIX I/O
based interface we use fread/fwite. For NVM, we use the
nvread() method.

Figure 7 shows the runtime comparison and Figure 6
compares the total context switch, system calls and stack
switching for all three interfaces. With respect to per-
formance, NVM memory based interface out performs
mmap based interface by nearly 2.5x and POSIX I/O in-
terface by over 3x. Next, analyzing the reason for the
performance difference, the left of Figure 6 shows the
average user-kernel context switch counts per second.
When using ‘mmap/unmmap’ system calls, every invo-
cation result in a context switch as confirmed by the fig-
ure in the center which captures the overall system call
invocation of the application. In POSIX I/O interface,
while fopen/fclose results in a system call, fread/fwrite
are library calls, which explains substantially lower con-
text switch. But the number of stack switching between
untrusted and trusted region due to fread(), fwrite() calls
are substantially higher due to sandboxing, which ex-
plains why POSIX interface suffers compared to mmap
based interface. In case of our proposed nvread() inter-

0

200

400

600

800

1000

1200

1400

1600

2 4 8 12 16

P
a

g
e

 L
o

a
d

 T
im

e
 (

m
s)

#. of Email Categories

RD NVM

Figure 8: Reducing serialization cost.
face (see Figure. 4), files are stored as memory chunks
(objects) with a name identifier maintained by the alloca-
tor. A nvread() call results in mapping a 2MB region (see
allocator optimizations), containing one or more cache
objects, resulting in fewer system calls, and hence 2x
lesser system call compared to POSIX I/O reducing the
sandboxing cost. Further, the application has a sequen-
tial access pattern with runtime less than a second result-
ing in comparatively lower cache misses as observed by
others on client platforms [14]
User Personalization: Email Classifier.

We next analyze an offline mode Bayesian based email
classifier [5] ported as NaCl application. It classifies new
emails using learning data generated from prior classifi-
cations with learning data stored in a persistent storage.
We model the app such that, all classification is done
before a webpage load. We use the CMU text learn-
ing group dataset for user personalization [17], which
contains 10 newsgroup email categories like sports, eco-
nomics, movies, etc. and randomly choose 100 emails
as input. The total learning data is approx. 253 MB (24
MB per category). Using this initial categorization, the
application (1) extracts feature points from new emails,
(2) loads training data and (3) compares the input feature
points and training data set. The library reads the learn-
ing data file line by line, generating special classification
structures and tokens, with token generation consuming
the maximum time. While token generation varies based
on the input data that needs to be classified, the header
structure is constant and results in a substantial num-
ber of fseeks, fread and hence the deserialization cost
in a sandboxed environment. When using NVM, all the
structures are stored in persistent memory ’as-is’ avoid-
ing the need for deserialization during load. The X axis

7

in the Figure. 8 varies the number of learning categories
to compare the NVM and POSIX I/O approach. Clearly
with increasing number of email categories, the benefits
from reducing the serialization and sandboxing provides
up to 2x improvements,which shows the effectiveness of
using NVM as nonvolatile heaps in reducing I/O serial-
ization cost in a sandboxed environment

5 Related Work

Sandboxing and Browsers: The impact of software-
based sanboxing has been extensively studied, from the
seminal work of Wahabe et al [22] and most recently
by [24]. A recent work on browsers focussed on com-
plete browser and OS redesign for security [20], but lacks
support for current browser framework. To the best of
our knowledge, however, our work is first in exploring
the opportunities of using future NVM heap for reducing
sandboxing impact on storage. Other efforts are focused
on moving a major portion of sandboxing mechanism to
the OS, similar to Android [9], but for OS agnostic appli-
cations like browsers, completely relying on OS-based
isolation seems unlikely. Related work like [25] uses
NVM to optimize storage in virtualizaed environment.
Finally, a recent work on exceptionless system calls [19]
studies the impact of reducing system call blocking cost
and we believe such kernel techniques can be very useful
in our future work.
NVM as Heap: Prior work like [11, 13] has proposed
use of NVM with a POSIX I/O interface. Our observa-
tions for browsers clearly show the disadvantages of such
proposal. ’NVM as a heap’ using PCM was first pro-
posed by Volvos et al. [21] while other research like [12]
discussed other issues like language/interface support,
orphan pointers and pointer swizzling. Our work of us-
ing ‘NVM as a heap’ is complimentary to the above, but
the key focus is to understand issues like sandboxing in
end-user device and design and address such issues us-
ing a specialized heap based solution. Additional con-
tributions of this work includes the design of an NVM
kernel memory manager that provides an end-end sys-
tem support with flexibility like compartments, whereas
most prior work uses an extension of RAMDisk based
file system to emulate NVM as a virtual memory.

6 Conclusion and Future Work

By using NVM as heap and exploiting the byte address-
ability of NVM devices like PCM, aided by hardware
paging and page protection techniques, we showed that
close to 3x improvements in storage performance can be
achieved in sandboxed environments like browsers. Con-
sidering the rapid growth of end user devices with a rich

pool of applications, almost all framework is moving to-
wards some form of sandboxing model. Hence, we be-
lieve our proposal can provide substantial performance,
specifically storage access gains in such sandboxed en-
vironments. Our next steps will include studying more
complex applications, such as games which require per-
sistence for accessing graphical as well as user data, and
the impact of using NVM on other browser components,
like database and cache. We also plan to explore opti-
mization in kernel that can further enhance our design.

References

[1] http://www.html5rocks.com/en/features/storage.

[2] http://asmjs.org/faq.html/.

[3] http://andreasgal.com/2010/10/13/compartments/.

[4] Computer language bench.http://tinyurl.com/b29bd2j.

[5] digramic bayesian classifier.http://dbacl.sourceforge.net.

[6] Slow browser i/o.http://mzl.la/x55dKq.

[7] Snappy Compession.http://tinyurl.com/ku899co.

[8] Webshoot Bench.http://code.google.com/p/web-shootout/.

[9] T. Blasing, L. Batyuk, A.-D. Schmidt, S. Camtepe, and S. Al-
bayrak. An android application sandbox system for suspicious
software detection. InMALWARE 2010, 2010.

[10] N. F. Brad Chen, David Sehr. Native client: Accelerating web
applications.http://tinyurl.com/mhbz59.

[11] A. M. Caulfield, A. De, et al. Moneta: A high-performance stor-
age array architecture for next-generation, non-volatilememo-
ries. InMICRO ’10.

[12] J. Coburn, A. M. Caulfield, et al. Nv-heaps: making persistent
objects fast and safe with next-generation, non-volatile memo-
ries. InASPLOS ’11.

[13] J. Condit, E. B. Nightingale, C. Frost, et al. Better i/othrough
byte-addressable, persistent memory. InSOSP ’09.

[14] R. Duan, M. Bi, and C. Gniady. Exploring memory energy opti-
mizations in smartphones. IGCC ’11.

[15] C. U. Hyojun Kim, Nitin Agrawal. Revisiting storage for smart-
phones. InUsenix ATC ’11.

[16] G. A. Miller. Wordnet: a lexical database for english.Commun.
ACM, 38.

[17] D. Mladeni. Using text learning to help web browsing. InSIGCHI
2001.

[18] F. Qian, K. S. Quah, J. Huang, J. Erman, A. Gerber, Z. Mao,
S. Sen, and O. Spatscheck. Web caching on smartphones: ideal
vs. reality. MobiSys ’12.

[19] L. Soares and M. Stumm. Flexsc: flexible system call scheduling
with exception-less system calls. OSDI’10.

[20] S. Tang, H. Mai, and S. T. King. Trust and protection in the
illinois browser operating system. OSDI’10.

[21] H. Volos et al. Mnemosyne: lightweight persistent memory.In
ASPLOS ’11.

[22] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham. Efficient
software-based fault isolation.SIGOPS Oper. Syst. Rev.

[23] Z. Wang, F. X. Lin, L. Zhong, and M. Chishtie. Why are web
browsers slow on smartphones? HotMobile ’11.

[24] B. Yee et al. Native client: A sandbox for portable, untrusted x86
native code. InSSP ’09.

[25] R. Zhou and T. Li. Leveraging phase change memory to achieve
efficient virtual machine execution. VEE ’13.

8

http://www.html5rocks.com/en/features/storage
http://asmjs.org/faq.html/
http://andreasgal.com/2010/10/13/compartments/
http://tinyurl.com/b29bd2j
http://dbacl.sourceforge.net
http://mzl.la/x55dKq
http://tinyurl.com/ku899co
http://code.google.com/p/web-shootout/
http://tinyurl.com/mhbz59

	Introduction
	Motivation and Background
	Design
	OS Support
	NVM Support for Sandboxed Browsers

	Experiments
	Benchmark Analysis
	Application Evaluation

	Related Work
	Conclusion and Future Work

