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Abstract browsersl[11] exists in multiple forms like (1) simple key

The growth in browser-based computations is raising th value store, (2) JavaScript (JS) based ‘sglite’ interface

need for efficient local storage for browser-based appli- 3) synchronous and asynchronous POSIX I/O interfaces

tions. A standard approach to control how such a I.]‘or storage of large blobs of data. All of the above meth-
th!gns.access and n?gn' late the nderIW'nu Iat?oprIOds are compatible across different browsers but are lim-

: . . Ibu > underlying p ited by JS and dynamic compilation bottleneck. Other
resources, is to run in-browser applications in a sandbox

X ¢ Sandboxi ks by stai d I .State of the art methods like Google’s NaCl, support
environment. ->andboxing Works Ly static code analysig, applications written in native languages (C, C++)
and system call interception, and as a result, the perfo

I < )
mance of browsc_ar applications making fr_equent 1/0 callsfjhuactir?éeé icﬁggzztﬁra;hggefrhigzlIi?]rtﬁzaogirﬁz)l(nc;?n-
can be severely |mpa§ted. To addr_ess this, we explore thr%unity via the asm j€]2] project.
utility of next generation non-volatile memories (NVM)

in client platforms. By using NVM as virtual memory, ~ While such features provide web applications with
and integrating NVM support for browser applications greater flexibility and performance in how they access
with byte addressable I/O interfaces, our approach showdnd store data, a key challenge with of all the above
up to 3.5x reduction in sandboxing cost and around 3x reMethods is that access to underlying storage resource
duction in serialization overheads for browser based apcan leave the system in vulnerable state due to security

plications, and improved application performance. threats. A commonly used solution to overcome secu-
rity vulnerabilities involves isolation between web appli

cations such that each web page instance has an exclu-
1 Introduction sive access to its state, and does not share persistent data.

Further, the untrusted web applications are completely
Browsers have become an indispensable computing plaisolated from the trusted browser framework and under-
form for client devices, ranging from cell phones, lap- lying OS by ‘sandboxing’[[22, 20, 24]. Sandboxing en-
tops, tablets, and desktops, not just for web browsingables secured access to system resources like memory,
but rather a complete computing framework. Browsernetwork, and storage, by intercepting applications’ ac-
capabilities in support of rich in-browser services arecess (system calls) to these resources (i.e., system call
increasing at a rapid pace, including by providing di- interception). apart from static analysis. While sandbox-
rect access to the underlying hardware and acceleratorig is important, as a side effect, they increase system
For instance, the HTML5 Web Workers standard allowsresource access (system call) cost. Specifically for re-
JavaScripts to exploit thread level parallelism in multi sources with software controlled access, the impact of
cores, and the WebGL APIs allow applications to uti- sandboxing is higher. For instance, with storage devices,
lize GPUs and access to other multimedia devices. Witlfrequent 1/O calls can substantially increase 1/O latency
growing computing needs, large data access and storagsd reduce throughput, such that sandboxing becomes a
needs have also increased, and fetching data from netltominant cost, irrespective of the underlying storage de-
work is time consuming. vice used. In addition, due to current block based storage

For performance reasons, however, recent populainterface, the impact of necessary data serialization (be-

runtimes like HTML5, Java Scripts, and Google Na- fore writing to storage device), and deserialization (re-
tive Client (NaCl), have started supporting direct I/O ac-trieving data from storage) in a sandboxed environment
cess to web applications. The local storage interface fofurther degrades application runtime.
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Hence a key principle in reducing sandboxing cost iskey value store used for storing user personalization in-
to reduce the software intercepted resource access witfiermation. More structured data, that includes metadata
out compromising the protection features of sandboxingstorage of browser cache, browser game states and oth-
We use this principle, by proposing to use next generaers, use a JavaScript (JS) based ‘sqlite’ interface. Appli-
tion storage class nonvolatile memory (NVM) like PCM, cations that require storage in blobs, for instance, down-
as a virtual memory (VM) ]21,12] as opposed to a blockloading a compressed video file and decompressing it be-
based device, and exploit the hardware controlled virtuafore playing, use synchronous and asynchronous file sys-
memory based isolation between applications. By usingem interfaces. Other motivating examples include per-
a VM based interface, coupled with features like pagesistent uploader, where a file is to be uploaded is copied
protection, each web application is restricted/ isolated t to a sandboxed region of a web application that allows
access its own state. This avoids a substantial number gfersistent upload across browser crashes, offline video
sandboxing interceptions (for example, intercepting ev-viewer with efficient seek capability, ability to prefetch
ery read/write call), and hence, reduces the overall remultimedia assets in the background, audio-video editor
source access latency critical for end user devices. that is supported by offline access of cache, offline web

To realize the benefit of our proposal, we use theemail clients. Yee et al_[24] discuss an interesting photo
well known Google Chrome-based Native Client (NaCl) storage application using the NaCl framework to store
framework. With NaCl, applications run as a browserand process image$Vhile the need for I/O in browsers
extension across client devices supporting major OSshas been increasing, poor I/O performance has contin-
like (Windows, Linux,Mac, ChromeOS). We refer to the ued to pose significant limitations to web application de-
NaCl framework as ‘state-of-art’, because NaCl applica-velopers [[6].
tions are approximately 200% faster than their HTML5 Storage access overheads. Recent studies on end
JS counterparts, and compute intensive NaCl applicaclient devices[[15] analyzed different end user applica-
tions developed in C, C++ experience less than 5%ijons, smartphones and flash storage devices and con-
overhead relative their native alternatives. We providec|uded that (1) flash storage performance variation across
NVM support for browsers by emulating DRAM as PCM devices as the main reason for poor application I/O in-
which are not yet commercially available. cluding browsers, and that (2) high random writes dom-

The technical contributions of this work include: inate the 1/0 cost. Replacing the flash devices with fu-

e Analysis of browser I/O performanceWe ana- ture byte addressable nonvolatile memory devices with

lyze the impact of sandboxing and serialization on100X higher bandwidth and same random vs. sequen-
browser 1/0 performance for the state of the arttja| access cost can considerably reduce the impact of (1)
NaCl and the commonly used HTML5 I/O inter- and (2). But to achieve complete latency benefit from

face. these new types of devices, we need to revisit the de-

e NVM heap interface to improve I/QWe propose a vice interface, so as to reduce the software overheads for

browser framework that uses NVM as a persistentgata accesses, i.e., reducing the number of indirection
heap to reduce the sandboxing and serialization imtevels before accessing the device, which can dominate
pact on /O performance. the access latency cost. For instance, in case of Android,

e Evaluation of applications and benchmarks¥e  due to the inherent design of the OS and multiple lay-

implement and evaluate our approach in the wellers of sandboxing, 1/0 performance can be substantially
known NaCl framework using representative bench-less (simple sqllite row insert test in native and android
marks, demonstrate reduction of sanboxing and seshowed around 300% slowdown). In other environments,
rialization cost, and improved performance. Our ike ‘state of the art’ NaCl, the indirection happens from

analysis applies to JS based sanboxing too with pefintrusted to trusted region and finally to OS as a system

webpage sandbox. call. Reducing software interactions, and exploiting the
hardware supported (virtual memory based) data access,
2 Motivation and Background is therefore key to reducing data access cost.
Sandboxing. The key goal of application sandboxing
I/O in browsers. I/O capabilities for in-browser s to isolate applications from code and data of other ap-

web applications have existed for a while, with every plications by restricting the access to system resources
browser supporting a customized application interfaceand to comply with user granted permissions. Sanbox-
Recent HTML5 standardization efforts, however, pro-ing mechanisms vary across systems, ranging from rule
vide several 1/0 and data storage interfaces. First, therbased executions to virtual machine emulation to static
are the traditional application transparent and explicitcode profiling. In case of higher level language like

browser caching which have been extensively studied idava, the language constructs and runtime provides the
the past([23, 18]. Other important forms include a simplesandbox (Dalvik VM in case of Android based systems),
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formance. While we use the Google-based NaCl, othe cific compartments (mem% G> Kemel  Manager

runtimes also have similar sandboxing cost. The NaC VMAs) ] HEEST

framework adapts two levels of sandboxing — inner anc

outer sandboxX[24]. The inner sandbox provides binary Figure 3: Design

validation by using static analysis and restricts unsafe

instructions. As most analysis is done statistically, theln Prowsers, comparing the browser-based with the na-
inner sandbox has less impact on application runtimdivé execution of a simple benchmark that opens a file,
whereas for outer sandboxing, untrusted applicationsWrites data to it in chunks of 512 bytes, and then closes
use system call wrappers and are intercepted by a trustdd There is a large increase in I/O time for the browser
region. Similar to context switches between user and kercase, attributed to the fact that with increasing numbers
nel level, control transfers happen between untrusted an@lf 1/O calls, sandboxing overheads also increase. Using
trusted regions using springboard and trampoline techth€ existing memory map (mmap) system call interface
niques, making a system call highly expensive compared"he” dealing with few large files can reduce sandbox-
to general applications. For browser-based I/0, NaCIng impact, but when the number of files that need to be
uses the HTML5 compatible Pepper library and memoryMapped and un-mapped is high (for instance compress-
access by untrusted applications is restricted to a specifi@’d all image files in a directory by mmaping them ),
address range using page protection mechanism and ame overall system call, user_—kernel context switching can
region can be expanded/shrunk by registering it with the"egate the memory map gains as shown in our evaluation
NaCl runtime. The runtime maintains a per process (arfection (see Sekl 4).

untrusted application) address table mapping containingerialization in Sanboxed Environments. Serializa-
the address range and access permissions, and registetgsh is a well known method of converting in-memory
address regions do not incur access sandboxing costgata structures to a sequential persistent data format and
but rather leverage the hardware support for illegal acdeserialization is the inverse operation. Serialization r
cess protection. This is in contrast to file system operasults in additional I/0 system calls primarily in the form
tions, where every I/O syscall needs to tr&equent /O of seeks and writes/reads to write data to persistent stor-
calls by applications cause severe I/O and bandwidth image. In the case of sanboxed environments, the cost of
pact irrespective of the underlying physical device (e.g.serialization impact is substantially higher due to addi-
NVM, RAMDisk, or SSD), which makes such file systenfional system call interceptionProviding applications
calls highly unsuitable in browser-based environments. with a non volatile heap based interface can avoid seri-
To understand the importance of choice of interface alization/deserialization across 1/0O data access, by-stor
we did a simple test using NaCl. Figlre 2 shows a sim-ing and loading data structures exactly in the way they
ple benchmark demonstrating the 1/0 performance issuare stored in memory.



/Istoringto NV Heap can request from the OS an isolated VMA (virtual mem-

Image~imgdb = nvmalloc(*img_root*,size); ory area structure) through mmap, for avoiding access to
for each new mage . .

Image*imgdblcnt]= nvmalloc(size NULL); a memory region by multiple untrusted browser worker
ent+; ... threads. To the user level applications, a compartment
’i’;egi'”r?we;;E{Tm'\é\ir;'gf&size): is just a region of memory reserved through the mmap
/fimplicit load of all child ptrs call, and the OS manager avoids merging such VMAs by

tagging VMAs with their thread id. This allows mul-
~ Figure 4: Programming Model tithreaded applications like browsers to partition their
3 Design memory based on the isolation requiremehnts [3]. Further,

data consistency guarantees for NVM writes are satis-
I/O calls in sanboxed environment transition from un-fied by fencing and flushing cache lines. We are also
trusted to trusted to privileged (kernel) layers. Our de-currently designing several end user device specific OS
sign reduces the multiple levels of software redirectionsoptimizations including memory allocation policies and
for 1/O calls, by relying on fast hardware based pagetransactional mechanisms, and our future work will dis-
access for persistent storage. We achieve this by excuss them in detail.
ploiting the byte addressability and hardware-supported
page-based memory management and protection tech-
nigues for NVMs. Applications allocate persistent re-l}"2 NVM Support for Sandboxed
gions of NVM similar to a heap, and instead of file Browsers
system reads and writes, perform load and store oper

at[ons o the pgrsstent regions. Key differences Wlthbrowser applications to explicitly allocate and access
prior \'/vorl'< [21] |ncI.u.deS NVM support for and s'eve.ral eristent data in NVM. The NaCl framework categorizes
pptlmlzat|ons spe(_:lflc to persistent I_arowser appllcanonihe runtime into trusted and untrusted components (see
in sandboxed environment and a wrtual_ memory base igure(®). The trusted region implements protection: it is
NVM k.erne! manager compared to the file buffer Cac;heresponsible for providing all system resource references
extensions in prior work. and handles, along with system call interception. The
untrusted region provides the user level interfaces, to the
3.1 OS Support NaCl applications finally intercepted by the trusted run-
time. Since the two regions maintain separate stacks, a
To integrate NVM at OS level, it is represented as a spe€all from the untrusted to trusted region results in ex-
cial node in a heterogeneous memory system. We levepensive stack switching. To avoid such costs, applica-
age OS-level NUMA support, by configuring a NUMA tion level resource management can be done in the un-
memory node as NVM during system boot. To managerusted region after getting resource reference. For in-
the NVM node, we have developed a custom NVM man-stance, user level memory allocator like ‘dimalloc’ can
ager by extending the Linux memory management whicthe implemented in the untrusted region, and the refer-
controls allocation, deallocation and persistent metadatence of memory address using the sbrk()/mmap() call
structure maintenance in the kernel layer. Each pro€an be obtained from the trusted region. To match this
cess has a persistent page tree which is loaded from pedlivision of state and functionality across NaCl compo-
sistent storage (SSD currently) during process launchnents, we divide our user-level NVM component across
Each process uses a unique identifier to load its persighe trusted and untrusted layers of the NaCl library. We
tent pages in its address space. The NVM manager prdirst describe the untrusted NVM component followed by
vides persistent NVM allocations using the 'nvmmap’, the trusted component.
nvunmmap’ system call, generally used by the alloca-Untrusted NVM allocator. The untrusted NVM com-
tor. The mmap call results in creation of a virtual mem- ponent provides byte addressable interfaces to applica-
ory area (VMA) structure containing several pages. Thetions and implements user-level management of NVM
kernel internally maintains persistent per process kerstate. Application allocate persistent chunks using the in
nel data structures, which contains a tree of VMA andterfaces offered by untrusted NaCl NVM allocator com-
each VMA contains a tree of page for supporting appli-ponent. The persistent allocator is an extension of the
cations across restarts. To emulate application sessiaglibc "dimalloc” library similar to other works [12], and
level persistence, we prevent the OS from swapping peris implemented in the untrusted layer. Figlite 4 shows
sistent pages allocated by NVM manger and use SSD foa simple programming model of how applications allo-
storing kernel structures and data pages for persistenazate (nvmalloc) and access persistent heap(nvread). Per-
across reboots. A key feature specific to browsers is thsistent pointer handling across restarts is done by well
support for compartments, where the browser frameworlknown pointer swizzling technique. Placing the alloca-

ur design consists of a user-level library to allow NaCl



tor in the untrusted region, instead of trusted componentange to access table. Since the trusted and untrusted
avoids substantial stack switching overhead between theomponents have separate logical segments and stacks,
two regions for every application memory allocation call, after memory allocation, the trusted component converts
but also requires sandboxing specific allocator optimizathe memory reference to the untrusted application ad-
tions. The implementation is secure because (1) a mmagress range.

based reservation by the allocator and other memory ref- Once the NVM address ranges are mapped into the
erences are still obtained via a call to the trusted regionprocess address space, the applications are free to ac-
and (2) any illegal memory address access outside theess any memory address in the range and do not en-
registered range of the untrusted application would recounter sandboxing costs. This provides substantial
sult in an application exception. The allocator maintainsperformance benefits by reducing the outer sandbox-
a log of process level persistent allocations, and the logng overheads. Across application (browser application)
is used on restarts to locate allocations from pevious segestart, the unique keys are used as a unique naming en-
sion. An allocated chunk can be located at any offset otity for reloading the application access table. Our cur-

a compartment (mmap’ed region), but every chunk con+ent design relies on the browser application to provide a
sists of metadata maintaining detail about its parent comunique key and this is similar to sandboxing in Android
partment as well as an offset within the compartment. Allframework [9] where each application has a unique key
metadata is maintained in persistent memory. across sessions. Future work would focus on more appli-

Sandboxing specific allocator optimizations. Most  cation transparent key generation.
optimizations revolve around reducing frequent use of

the system calls_in the allocator (e.g., s_brk(), map, un4 - Experiments

map, etc.), as this can negate the benefits over a POSIX

I/O interface. Two key optimizations include (1) al- |n order to investigate the benefits of leveraging the byte
locator memory reservation size, and (2) dividing theaddressability of future non volatile memories in improv-
memory reservations among multiple threads. Regardmg browser application’s I/O performance, we seek to
ing (1), allocators generally use mmap/sbrk to reserveinderstand the following. (1) Is the current storage de-
a few pages (dimalloc uses OS pagesize) of memorysice performance mainly responsible for the 1/0 slow-
try to fit in application allocations in the reserved re- gown in sanboxed environments like browsers? (2) What
gions, and when the reserved region is insufficient, in4s the impact of the choice of storage interface on a san-
voke a mmap/sbrk call again. For applications requiringpoxed environment? (3) What are the benefits of treating
large persistent storage needs, this can result in a suliyMs as a nonvolatile heap as opposed to block storage
stantial number of system calls (and hence sandboxingevice? To answer these questions, we use the browser
overheads). To avoid this, applications provides a hinhased WebShootbendH [8] benchmark, and two applica-
to the allocator for making larger reservations, (maxi-tions: Snappy data compression, and an offline content
mum of 16 MB), with default reservations of 4MB. (2) pased email classifier. We next provide details on the ex-
making large reservations in multithreaded applicationsperimental methodology.

can be dangerous. To avoid this, we divide the appli-Eyaluation Methodology. For representing an end user
cation reservations into thread level compartments diSgevices like smartphone, we use a dual core 1.66 GHz
cussed earlief [3]. D510 Atom based development kit with 2GB DDR2
Trusted NVM component. The trusted NVM com- DRAM, Intel 520 120GB SSD. For NVM, the I/O in-
ponent is a thin layer responsible for providing (1) anterface is replaced with an heap interface (nvmalloc). In
indirect access to the system level NVM interfaces likeall workloads, for taking into account slow NVM writes
‘nvmmap’, for allocating and accessing persistent re-for access that miss the 1MB L2 cache, we use PIN based
gions, (2) maintaining per application persistent NVM binary instrumentation to measure the ratio of load and
access region table with different protection levels, andstores in the NVM allocated address range, and then use
(3) handling out of bound access protection faults. Ev-hardware counters values to estimate the total load/store
ery untrusted application registers a unique key with themisses due to NVM access and use access latency values
trusted region for the first time, and the same key is usedrom [21]. We observed that for most application except
across sessions. The unique key registration also crex hashtable benchmark, the cache misses was less than
ates a persistent access table for the application (see Fid-1.5% as discussed in other work|[14].

ure[3). After registration, applications use untrusted al-

locators for persistent memory allocation, which invokes4.1 Benchmark Analysis

an NVM specific mmap call to the trusted component.
The trusted component checks if the requested memorWebShootbench is an open soukebshoobenchmark
reservations are private, and adds the memory addresgas originally derived derived from the Computer Lan-



Benchmark 1/0 time(%)
Fasta 41.207
Revcomp 49.33
kNucleotide 12.32
SpellCheck 19.89

Table 1: Time spent on I/O by benchmark apps.
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Figureld shows the time spent on 1/0O by each applica-
tion. To understand the impact of storage device on per-
formance, we perform experiments with SSD, RamDisk
(RD) and NVM (NVM).

Observations Figure[® compares the use of NVM as
heap with RAMdisk and SSD performance. The appli-
cations generate/access around 64MB of I/O data. (1.)
As expected, NVM with heap shows significant perform

81(2) gains (Y-axis shows runtime) in all the benchmarks with
% maximum gains for read intensive 'Revcomp’ ( 3.5X)
E 6 and least gains for compute intensive kNucleotide (20%)
& ‘2‘ and short running spell check application. (2.) An in-
0 teresting result is that, both RAMdisk and SSD perform
§§%§ @@%%0 CQSQ)@%Q OQ%@%%O poorly with very little difference between them. This
ES CCE7 ST Fe shows that, irrespective of the storage device, frequent

1/0 read/write calls hurts both SSD and RAMDisk which
shows the impact of sandboxing in browser 1/0O slow-

Benchmark Apps.
Figure 5: Benchmark Peformance Comparison

downs, and (3.) due to sandboxing, even writes that

guage Benchmarks Ganig [4, 8] to compare the speedugenerally benefit from buffer cache, suffer substantially
of NaCl vs. JavaScript and we focus just on the work-with POSIX I/O interface in sandboxed machines. As
loads that depend on I/O. Taljle 1 shows the I/O vs. comexepected, increasing I/O size, resulted in widening gap
pute time on a vanilla Linux Atom platform. To under- between NVM heap and RAMDisk approach (not shown
stand the impact of storage device on performance, were for brevity). We also observed that, the speedup
evaluate our experiments in SSD, RamDisk and emulatedchieved from our NVM based design (compared to

NVM.

RAMDisk) on the client platform (Atom) to be higher

e Fasta (FS) is a write intensive benchmark that genthan the server platforms (Sandybridge) as shown in Ta-

erates ranqlom DNA sequences b_y weighted ranple.[3. The benchmark runtime was maintained constant
dom sglectlon from a |Ist_ of preQefmed sequencesacross platforms. This is mainly because, software based
and writes 3 sequences line-by-line. The number ofsandboxing requires some processing time, and reducing

‘fwrites’ system calls are substantial
¢ Revcomp (RC) reads DNA sequences line-by-linehigher benefitsThese observations show that, choice of

from the output generated by Fasta, and for each sénterface is critical to 1/O performance in browsers apart

quence, writes the id, description, and the reversefrom the storage device and using NVM as heaps can

complement sequence to output.

calls dominate the I/O time of the application.

e kNucleotide (KN) reads the DNA sequence from

such actions in slower cores with our NVM design shows

Blocking readavoid substantial sanboxing cost.

Fasta’s output line-by-line, generates k-nucleotide?-2 Application Evaluation

Eeqﬁenbﬁes a_nr:j e?Ch k'nUCIGOt'?e is updated 1"_?] Ve next evaluate the effectiveness of NVM as heap for
ashtable, with value as count of occurrence. The, ., ser |10 using two other applications: (i) a NaCl-

gaéi?riies(f;:;rnzr;'n% compared to the total COMhased disk cache compression using Snappy [7], (ii)

e Spell Check (SC) loads popular "Wordnet' dictio-
nary files [16] into a hashtable, generates word
from an input file and identifies words that are not in

Bayesian based offline email classifier. Using Snappy,
we compare the implications of using memory interface

Sor NVM vs. a POSIX-based block interface or a mem-

ory backed ‘mmap’ interface. With the email classi-

the dictionary. The dictionary set contains 16 f”esfier, we analyze the serialization/deserilization benefits

each containing its own hashtable. We use four 1

MB input text files.

6

of NVM. For the POSIX I/0 and mmap interface, we use
RAMDisk based file system (tmpfs) to avoid the storage
device noise.

Benchmark Server Gains(%) Client Gains(%)

Fasta 68.85 7351 Snappy Compression. Snappy is a high per-
Revcomp 15.84 21.94 formance compression/decompression library (shipped
kNucleotide 73.27 83.82 with Chrome source) with preference for speed than
SpellCheck 22 26.234 compression size. We ported it to NaCl approx. in 2

hours and use it to compress approximately 500MB of

Table 2: NVM gains: server (Sandybridge) vs. client default browser cache data (3001 files), as shown useful

(Atom)
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and video files and compression achieves 28% reduc- Figure 8: Reducing serialization cost.

tion in disk cache size. The compression/decompressioface (see Figurél]4), files are stored as memory chunks
time is well within the limits of average page load time (objects) with a name identifier maintained by the alloca-
(currently around 4-7 seconds). For the POSIX I/O andtor. A nvread() call results in mapping a 2MB region (see
'mmap’ based interface, all the cache is in RAMDisk, allocator optimizations), containing one or more cache
whereas for NVM heap, we manually load the cache toobjects, resulting in fewer system calls, and hence 2x
the emulated NVM region with a helper process. Welesser system call compared to POSIX 1/O reducing the
are currently working on changing the entire cache in-sandboxing cost. Further, the application has a sequen-
terface to NVM support, and future work would not re- tial access pattern with runtime less than a second result-
quire such helper process. The snappy algorithm loadig in comparatively lower cache misses as observed by
the entire file to memory, performs compression and fi-others on client platforms_[14]
nally writes to an output file (RAMDisk or NVM). In  User Personalization: Email Classifier.
case of the ‘mmap’, each file is mapped into memory, e next analyze an offline mode Bayesian based email
compressed and unmapped, whereas for the POSIX 1/@assifier|[5] ported as NaCl application. It classifies new
based interface we use fread/fwite. For NVM, we use thesmails using learning data generated from prior classifi-
nvread() method. cations with learning data stored in a persistent storage.
Figure[T shows the runtime comparison and Fiduire 8/e model the app such that, all classification is done
compares the total context switch, system calls and stackefore a webpage load. We use the CMU text learn-
switching for all three interfaces. With respect to per-ing group dataset for user personalizatidn| [17], which
formance, NVM memory based interface out performscontains 10 newsgroup email categories like sports, eco-
mmap based interface by nearly 2.5x and POSIX I/O in-nomics, movies, etc. and randomly choose 100 emails
terface by over 3x. Next, analyzing the reason for theas input. The total learning data is approx. 253 MB (24
performance difference, the left of Figure 6 shows theMB per category). Using this initial categorization, the
average user-kernel context switch counts per seconapplication (1) extracts feature points from new emails,
When using ‘mmap/unmmap’ system calls, every invo-(2) loads training data and (3) compares the input feature
cation result in a context switch as confirmed by the fig-points and training data set. The library reads the learn-
ure in the center which captures the overall system caling data file line by line, generating special classification
invocation of the application. In POSIX I/O interface, structures and tokens, with token generation consuming
while fopen/fclose results in a system call, fread/fwrite the maximum time. While token generation varies based
are library calls, which explains substantially lower con-on the input data that needs to be classified, the header
text switch. But the number of stack switching betweenstructure is constant and results in a substantial num-
untrusted and trusted region due to fread(), fwrite() callsber of fseeks, fread and hence the deserialization cost
are substantially higher due to sandboxing, which exdin a sandboxed environment. When using NVM, all the
plains why POSIX interface suffers compared to mmapstructures are stored in persistent memory 'as-is’ avoid-
based interface. In case of our proposed nvread() inteling the need for deserialization during load. The X axis



in the Figure[B varies the number of learning categoriegool of applications, almost all framework is moving to-

to compare the NVM and POSIX I/O approach. Clearly wards some form of sandboxing model. Hence, we be-
with increasing number of email categories, the benefitdieve our proposal can provide substantial performance,
from reducing the serialization and sandboxing providesspecifically storage access gains in such sandboxed en-
up to 2x improvementayhich shows the effectiveness of vironments. Our next steps will include studying more
using NVM as nonvolatile heaps in reducing I/O serial- complex applications, such as games which require per-

ization cost in a sandboxed environment

sistence for accessing graphical as well as user data, and

the impact of using NVM on other browser components,

5 Related Work

Sandboxing and Browsers: The impact of software-
based sanboxing has been extensively studied, from the
seminal work of Wahabe et al [22] and most recently [1]
by [24]. A recent work on browsers focussed on com- [2]
plete browser and OS redesign for secufity [20], but lacks [3]
support for current browser framework. To the best of [4]
our knowledge, however, our work is first in exploring [5]
the opportunities of using future NVM heap for reducing [6]
sandboxing impact on storage. Other efforts are focused?7]
on moving a major portion of sandboxing mechanism to [8]
the OS, similar to Android[9], but for OS agnostic appli- [9]
cations like browsers, completely relying on OS-based
isolation seems unlikely. Related work like [25] uses
NVM to optimize storage in virtualizaed environment.
Finally, a recent work on exceptionless system calls [19}11
studies the impact of reducing system call blocking cost
and we believe such kernel techniques can be very useful
in our future work. [12]
NVM as Heap: Prior work like [11,138] has proposed

use of NVM with a POSIX I/O interface. Our observa- 13]
tions for browsers clearly show the disadvantages of such
proposal. 'NVM as a heap’ using PCM was first pro- [14)
posed by Volvos et al_[21] while other research likel [12]
discussed other issues like language/interface suppoift5]
orphan pointers and pointer swizzling. Our work of us-
ing ‘NVM as a heap’ is complimentary to the above, but [1€]
the key focus is to understand issues like sandboxing in
end-user device and design and address such issues L[1]S7-]
ing a specialized heap based solution. Additional CONqyg
tributions of this work includes the design of an NVM
kernel memory manager that provides an end-end sys-
tem support with flexibility like compartments, whereas [19]
most prior work uses an extension of RAMDisk based
file system to emulate NVM as a virtual memory. [20]

(10]

(21]

6 Conclusion and Future Work 22
By using NVM as heap and exploiting the byte address-[23]
ability of NVM devices like PCM, aided by hardware
paging and page protection techniques, we showed thada;
close to 3x improvements in storage performance can be
achieved in sandboxed environments like browsers. Coni25]
sidering the rapid growth of end user devices with a rich

like database and cache. We also plan to explore opti-
mization in kernel that can further enhance our design.

References

http://www.htmlbrocks.com/en/features/storage.
http://asmjs.org/faq.html/|
http://andreasgal.com/2010/10/13/compartments/|
Computer language benchttp://tinyurl.com/b29bd2jl
digramic bayesian classifid¢rttp: //dbacl.sourceforge.net|
Slow browser i/ohttp://mz1.1a/x55dKq.

Snappy Compessiohttp://tinyurl.com/ku899col

Webshoot Bencthttp://code.google.com/p/web-shootout/|

T. Blasing, L. Batyuk, A.-D. Schmidt, S. Camtepe, and S. Al-
bayrak. An android application sandbox system for suspgio
software detection. IMALWARE 20102010.

N. F. Brad Chen, David Sehr. Native client: Accelergtineb
applicationshttp://tinyurl.com/mhbz59|

] A. M. Caulfield, A. De, et al. Moneta: A high-performanders

age array architecture for next-generation, non-volatilemo-
ries. INMICRO 10

J. Coburn, A. M. Caulfield, et al. Nv-heaps: making peesis
objects fast and safe with next-generation, non-volatilenme
ries. INASPLOS '11

J. Condit, E. B. Nightingale, C. Frost, et al. Better ffwough
byte-addressable, persistent memoryS®SP '09

R. Duan, M. Bi, and C. Gniady. Exploring memory energy opti
mizations in smartphones. IGCC '11.

C. U. Hyojun Kim, Nitin Agrawal. Revisiting storage fonmsrt-
phones. IJsenix ATC '11

G. A. Miller. Wordnet: a lexical database for englishommun.
ACM, 38.

D. Mladeni. Using text learning to help web browsing SIGCHI
2001

F. Qian, K. S. Quah, J. Huang, J. Erman, A. Gerber, Z. Mao,
S. Sen, and O. Spatscheck. Web caching on smartphones: ideal
vs. reality. MobiSys '12.

L. Soares and M. Stumm. Flexsc: flexible system call sclireglu
with exception-less system calls. OSDI'10.

S. Tang, H. Mai, and S. T. King. Trust and protection ie th
illinois browser operating system. OSDI'10.

H. Volos et al. Mnemosyne: lightweight persistent memdry.
ASPLOS '11

R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham. Effici
software-based fault isolatio®IGOPS Oper. Syst. Rev.

Z. Wang, F. X. Lin, L. Zhong, and M. Chishtie. Why are web
browsers slow on smartphones? HotMobile '11.

B. Yee et al. Native client: A sandbox for portable, wstied x86
native code. IrSSP '09

R. Zhou and T. Li. Leveraging phase change memory to aehiev
efficient virtual machine execution. VEE '13.


http://www.html5rocks.com/en/features/storage
http://asmjs.org/faq.html/
http://andreasgal.com/2010/10/13/compartments/
http://tinyurl.com/b29bd2j
http://dbacl.sourceforge.net
http://mzl.la/x55dKq
http://tinyurl.com/ku899co
http://code.google.com/p/web-shootout/
http://tinyurl.com/mhbz59

	Introduction
	Motivation and Background
	Design
	OS Support
	NVM Support for Sandboxed Browsers

	Experiments
	Benchmark Analysis
	Application Evaluation

	Related Work
	Conclusion and Future Work



