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Abstract

Advances in ubiquitous connectivity and location sensing tech-
nology have fuelled a rich collection of location based services
(LBSs). Efficient spatial indexing techniques are one of the most
effective optimization methods to improve the quality of services.
Although a variety of spatial index structures like R-tree family
and grid variant index structures have been proposed and de-
ployed in real time location based service provisioning systems,
they are known to perform poorly when there is high degree of the
skewedness in both density distribution and spatial resolution of
mobile objects. First, it is hard to decide the optimal resolution of
the grid structure. Second, it is equally hard to build a balanced R-
Tree like index structure that is effective in handling highly skewed
distribution of mobile objects. With these issues in mind, we in-
troduce the concept of spatial order sequences and propose a fast
and compact index structure for moving objects by utilizing spa-
tial order sequences through a number of density-conscious opti-
mizations. First, we propose the concept of Ordered-Cell Group
(OCG) and design a OCG based grid index structure. Second, we
speed up the search efficiency of OCGs by effective compaction of
identifiers of OCG cells to maximize the fan-out of index node and
decrease the depth of the index. Finally, we develop an efficient
query processing algorithm that can effectively utilize OCG cells
to speed up the processing of spatial queries. Our experimental
results demonstrate the effectiveness of our approach compared to
existing index techniques.

1. Introduction

The ubiquitous connectivity and wide deployment of
mobile devices have made location aware computing and lo-
cation based services (LBSs) a popular information technol-
ogy in the recent years. LBSs provide mobile users conve-
nient services for retrieval of location-dependent informa-
tion, such as nearby gas stations, restaurants, transportation,
and points of interest, and delivery of content to the mobile
users on the road in real time. For example, with LBS, one

can find the current location of a moving vehicle, the esti-
mated time to reach a place, or where to meet their friends
through location sharing services, such as Foursquare. As
the number of mobile devices and the number of location
based services grow rapidly, one of the most effective opti-
mization techniques in scaling location based services is to
employ efficient spatial indexing structures and algorithms
for managing location information of moving objects and
querying moving objects in real time.

A spatial index is considered effective if it can handle
both retrieval and update of the location information of
moving objects in real time within desired response time.
However, the index structure that is efficient for querying
moving objects may not be effective for frequent location
updates and vice versa. Thus, the first requirement in de-
signing an effective spatial index is the capability of han-
dling both frequent location updates and fast processing of
location queries in real time. The second requirement in de-
signing an effective spatial index is the capability of provid-
ing high performance of LBSs no matter whether the mov-
ing objects follow the uniform spatial distribution or skewed
spatial distribution. In real world, moving objects move
continually and follow skewed spatial distribution. Thus,
the result of a query tends to change continously accord-
ing to the movement of the object such that the query is
re-evaluated frequently to keep the accuracy of the result.
Furthermore, when the density of mobile objects is changed
unpredictably, the index structure should be self-tunable in
response to the change of density.

Various spatial index structures have been proposed for
managing and querying moving objects. We can categorize
them into three classes: the Grid file index structure, the
R-tree like indexing structure[1], and the B+-tree variant
Index structures based on the Grid file. Unfortunately, most
of existing indexing structures and algorithms to date fail to
meet both of the above-mentioned requirements.

Concretely, the Gird structure is one of the most pop-
ular main memory resident index structures for processing
moving object queries and managing moving objects. How-



ever, Grid index suffers from two limitations. First, it is
memory-resident and cannot handle very large datasets and
thus it fails to perform when the size of the moving objects
exceeds the memory boundary. Second, the performance of
grid index is also affected by the relation between the res-
olution (cell size) and data distribution. If the resolution
is too high, the storage cost and query processing cost be-
come worse because most of cells include very small num-
ber of objects, with cell-based disk blocks, the storage uti-
lization becomes low. In addition, when the size of cells is
too small, the number of cells relevant to a query will be
increased, which increases the number of disk I/O. If the
grid resolution is too large, then the query processing cost
becomes worse. This is because when the size of cell is too
large, each cell includes too many objects. When a query
is overlapped with a large cell, all objects in the cell will be
retrieved and evaluated against the query. Therefore, it is
a known challenge for grid structure to decide the optimal
resolution.

The second and third categories of index structures are
disk-resident. Many R-tree variant index structures have
been proposed to date, such as R∗-tree[2], TPR-tree[3] and
TPR∗-tree[4]. They are efficient for real time query pro-
cessing but suffer from high update cost due to frequent
splitting and merging of index nodes in the presence of high
rates of location updates, which is common for moving ob-
jects. To overcome the update performance problems, sev-
eral research proposals put forward the efforts of employ-
ing Grid file index structure, a memory resident indexing
technique or employing Grid file in conjunction with B+-
tree. Representative examples include Bx-tree[5], Bdual-
tree[6] and ST2B-tree[7]. They first overlay the index space
with a grid which divids the index space into the same-sized
cells. Then, instead of directly using cell based inverted in-
dex structure like the Grid file, it will sort the cells using an
ordering method such as Hilbert curve or Z-order curve [9].
The cells are used as data nodes in the index structures and
are managed by B+-tree index. Only ST2B-tree considers
various density distributions, but it still suffers from the lim-
itation of deciding the appropriate resolution of the grid.

In this paper, we propose a fast and compact index struc-
ture for moving objects, called Ordered-Cell Group index
(OCG-index for short), which is efficient even when the
density of moving objects is skewed. The OCG-index has
a number of unique features. First, we introduce the con-
cept of spatial order sequences and the concept of Ordered-
Cell Group. By utilizing the Ordered-Cell Group (OCG),
we make better utilization of the storage space by assign-
ing each OCG to a disk block instead of mapping a cell to
a disk block. This guarantees the number of objects in a
leaf node and enables us to reduce the depth of the index.
It leads to save both the storage cost and query processing
cost. Second, we design a OCG based grid index struc-

ture by utilizing spatial order sequences through a number
of density-conscious optimizations. Third, we speed up the
search efficiency of OCGs by effective compaction of iden-
tifiers of OCG cells to maximize the fan-out of index node
and decrease the depth of the index. We observe that there
is an opportunity to compress the identifiers of cells using
techniques like prefix-tree[8]. By compression, we can in-
crease the fan-out of a node and reduces both the storage
cost and query processing cost. Finally, we develop an effi-
cient query processing algorithm that can effectively utilize
OCG cells to speed up the processing of spatial queries.
Our experimental results demonstrate the effectiveness of
our approach compared to existing index techniques.

The rest of paper is organized as follows. Section 2 de-
scribes the related work and defines the problems. Section
3 introduces the proposed index structures and section 4
shows the performance evaluation between the proposed in-
dex and other index structures. Finally, section 5 concludes
the paper and mentions the future work.

2. Background and Related Work

Ordering methods, such as Z-order curve and Hilbert
curve, are two of the most popular space filling
curves, which frequently used for linearization of multi-
dimensional data. A key property of these ordering func-
tions is that it can map multidimensional data to one di-
mension while preserving the locality of the data points.
These ordering methods were originally introduced in [10].
Once the data is sorted according to these ordering, any
one-dimensional data structure can be used for indexing the
data, such as binary search trees and B-trees. Hilbert curve
is proposed to increase the locality of the sequence in com-
parison with Z-order.

Grid structure divides the data space into cells of the
same size according to the resolution. It works like a hash
function, which can quickly find the cell in which a mov-
ing object resides. Recently, several research efforts use
grid structure and cell ordering sequences to store the data
of moving objects inside a B+-tree, which shows to im-
prove the update problem of R-tree variant index structures
while maintaining good query processing performance for
moving objects [5][6][7]. Bx-tree[5] is the first index struc-
ture using grid structure managed by B+-tree with ordering
sequences such as Z-order curve and Hilbert curve. Each
cell has identifier on the ordering sequences and is put into
B+-tree. Bx-tree manage at least two of the B+-tree ac-
cording to the time sequence to process the future trajectory
queries efficiently. It helps to reduce the search boundary of
queries. And also, the link of the leaf node to next node in
B+-tree is to save the cost traveling index when processing
queries. Bdual-tree[6] also has similar approach to Bx-tree.
However, Bdual-tree improves the query processing time by



reducing the search boundary, compared to Bx-tree.
Both Bx-tree and Bdual-tree are based on grid structures.

However, they do not consider the various distributions of
objects. To solve the problem, ST2B-tree[7] is proposed.
ST2B-tree divides the index space according to the object
distributions. They manage a global grid structure and the
number of objects contained in each cell, and distinguish
the regions that have similar density by image processing
algorithm. Then, they assign Bx-tree for each region with
appropriate resolution for its density. However, it cannot
handle the environment with highly diverse density distri-
butions. Also ST2B-tree suffers from the same limitation
of resolution as the Grid file index approach because of the
cost of managing and adapting the global grid structure to
the density of moving objects.

We define the problems of previous work. The first prob-
lem is on deciding an appropriate resolution for a grid struc-
ture. ST2B-tree tried to solve the problem by clustering the
areas having similar density but it has the limitation in the
environment with highly skewed objects as we mentioned
above. The second problem is on the size for the cell iden-
tifiers in a grid structure. By using the identifiers of fixed
size, the size of the identifiers depends on the resolution
of grid structure regardless of how many empty cells are
in the grid. Thus with a grid with high resolution (smaller
cell size), the cell identifiers can be quite large and non-
negligible in terms of storage and query processing cost.
This observation motivates us to group the cells according
to the number of objects contained in the cells, such that we
map order cell groups to data nodes of the index instead of
cells. By reducing the number of nodes in the index struc-
ture, it leads to significant saving in both the storage cost
and query processing cost.

3. The OCG-Index Structure and Algorithms

In this section we first introduce the basic concepts in-
volved in defining our OCG-index structure and then de-
scribe the query processing algorithm for the OCG-index.

3.1. Ordered Cell Group (OCG)

Given a road network and its grid overlay, we first utilize
an ordering method, either Z-order curve or Hilbert curve,
to group cells into groups such that each group contains
equal or similar number of objects. We call such groups
the Ordered Cell Groups (OCGs). We assign each OCG a
unique identifier using the list of cell identifiers. The equa-
tion 1 computes the set of cells that form an ordered cell
group g and the identification of g, where G is a set of all
OCGs, g.id is the identifier of an instance g of G, C is a
set of all cells in grid, c.id is the identifier of a cell c, and

Nfanout is the number of fan-out of a data node.

gi.id = {cn.id|Nfanout ≥
m∑

j=n

|cj .O|, cj ∈ C,

cj .id < cj+1.id, 0 ≤ n ≤ m < |C|}, gi ∈ G
(1)

Figure 1 provides an illustrative example to show how to
decide OCGs using Z-order for a grid with the resolution of
4 by 4. The number of cells is 16, i.e., |C| = 16. Figure 1(a)
presents the naive approach to indexing moving objects us-
ing a grid structure. Figure 1b, Figure 1c, and Figure 1d
present a scenario where moving objects are changing their
locations at the time t0, t1 and t2 and how to decide OCGs
in each of these three time instances: t0, t1 and t2. Suppose
that the fan-out of data node is 6. In Figure 1b, there are 6
objects in whole data space at t0. In this cast, there is just
one OCG g0 in the data structures and the identifier of g0
is 0. At t1, an object is added into the cell 2 and g0 is split
because of overflow. To split a g0, we first find the middle
object in the ordering sequence and then find the cell over-
lapped with the middle object. The identifier of the found
cell becomes a split key. In this example, the split key is 7.
We create a new OCG g1, put all objects lying in the cells
whose the identifiers are bigger than 7 into g1 and remove
these objects from g0. Finally, we insert g1 into the index.
At time t2, when a few objects are inserted to g0 and over-
flow occurs at t2. Thus, 4 is selected as a split key, and a
new OCG g2 is created by splitting g0 again. The identifiers
of g0, g1, g2 are 1, 7, 4 respectively. Our OCG-index uses
OCGs as the index entries, instead of indexing every cell
as the entries in the index as done in the naive approach, the
number of OCGs inserted into the index is much smaller
as shown in Figure 1. By utilizing OCG as the unit of in-
dexing, we no longer need to keep every cell identifier in
the index, which significantly reduces the size of index and
enhances the search efficiency of index.

3.2. Computing the cell identifier on OCG

In this section we describe how to get an identifier of
a grid cell given an Z-order group. In this paper, we use
two typical ordering methods, Z-order and Hilbert curve.
Hilbert curve follows ‘U’ shape while Z-order follows ‘Z’
shape. Given that Hilbert curve is proposed to increase
the locality of the sequence in comparison with z-order, we
first describe how to obtain Z-order curves of a multidimen-
sional space and the properties of Z-order curves.

Z-order curve by design splits data space into 2n (n is
the binary bits of Z-value) number of equalized and disjoint
subspace and the Z-value of a point in multidimensional
space is simply calculated by interleaving the binary rep-
resentations of its coordinate values. The Z-value is used as
the name for each subspace. Z-order curve has two impor-
tant properties: (i) If subspace A encloses subspace B, the



B+-tree 

0 1 3 4 15 … Data nodes 

Index nodes 

(a) Naive approach

0 

1 

2 

3 

6 4 

5 7 

8 

9 

10 

11 

14 12 

13 15 

B+-tree 

0 

g0 

(b) OCGs at t0

0 

1 

2 

3 

6 4 

5 7 

8 

9 

10 

11 

14 12 

13 15 

B+-tree 

0 7 

g1 g0 

(c) OCGs at t1

0 

1 

2 

3 

6 4 

5 7 

8 

9 

10 

11 

14 12 

13 15 

B+-tree 

0 3 7 

g1 
g0 

g2 

(d) OCGs at t2

Figure 1: An example of deciding OCGs on Z-order se-
quence

name of subspace A is a prefix of that of subspace B. (ii) If
subspace A does not have the same Z-order prefix with sub-
space B, the subspace A does not intersect with subspace
B.
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Figure 2: Bit patterns as identifiers of cells on the ordering
sequences

We use bit patterns as cell identifiers. An identifier
presents the sequence value of a cell on the ordering algo-
rithms. Figure 2 illustrates how the identifier is generated
on both Z-order curve and Hilbert curve through the order-
ing algorithms. It also shows that the same coordinates have
different identifier in different algorithms. Both algorithms
use 2 additional bits to represent the hierarchical levels of
cells in the Grid. In Z-order curve, the front bit and rare bit
of the additional bits present x and y coordinates of cells in
the data space with 2×2 resolution respectively, as shown in
Figure 2a. While Z-order curve uses always the same shape,

in Hilbert curve, the shape is rotated to keep the locality of
the sequence according the position of cells as shown in
Figure 2b. The length of an identifier is determined by the
size of the smallest cells in the Grid. We show step by step
how a cell identifier is created on Z-order curve and Hilber
curve in Figure 2a and Figure 2b respectively. For instance,
in Figure 2a we show the cell with 2 bits identifier 10 in
level 1 is first split into 4 cells in level 2, each with 4 bits
identifier with 10 as Z-order prefix. The cell with identifier
1011 in level 2 continues to be split into 4 cells in level 3,
each with 1011 as the Z-order prefix. In level 4, we show
that when the cell with identifier 101110 in level 3 is split
into 4 cells, their cell identifiers are created by using the
same Z-order prefix 101110. Similar prefixing scheme is
used for creating cell identifiers on Hilbert-curve.

3.3. Compression of identifiers

It is known that one way to decrease the height of the in-
dex tree is to increase the fan-out of the index nodes. An ad-
vantage of using Z-order prefix on Z-order curve or Hilbert
prefix on Hilbert curve to create cell identifiers is the oppor-
tunity for compression of identifiers. Given that each OCG
is an entry in the OCG-index and the identifier of an OCG
is composed by the set of cell identifiers of the cells con-
tained in this OCG, thus, we can increase the fan-out of the
index nodes by compressing the identifiers of the cells.

By looking at the cell identifiers closely, we can observe
that a fair number of cells have many zeros in their tails
when these cells do not need to be further split while some
of their sibling cells continue to be split. Thus, an intuitive
approach to compression of cell identifiers is simply to omit
the number of 0 on the tail of the identifiers. For example,
if an identifier is 011000000 and its size is 64bit (8byte),
we present the identifier as 4 bit value 0110. If we have
the value 0110 and the maximum length of the identifier,
the decompression is processed by putting the number of
0 on the tail of the values according to the maximum size
of identifier. To maximize the fan-out of index nodes, it is
important to find a cell that has as many as 0 on the tail of
the identifier as a split key when splitting an OCG because
of the overflows when more spatial objects enter the spatial
region indexed by a given OCG. We call the identifier with
the maximum number of zeros in its tail the shortest identi-
fier. Formally, we define the shortest identifier as follows.

Definition 1 (Shortest Identifier).
Let [ids, ide] denote the identifier range in a given Grid
structure, where ids and ide are start and end identifiers of
the range respectively, and Lsufix(id) denote the length of
0 as the suffix of a given identifier id. The shortest identifier,
denoted by IDshortest, is an identifier with the maximum
length of 0 as its suffix in [ids, ide], formally defined by



Equation 2:

IDshortest(ids, ide) =
{idi|Lsufix(idi) ≥ Lsufix(idj), ids ≤ ∃idi ≤ ide,

ids ≤ ∀idj ≤ ide}
(2)

For example, given the identifier range [11010011,
11001000], the shortest identifier is 11010000. Figure 3
shows the algorithm to find the shortest identifier for a given
identifier range.

Find_shortest_split_identifier(id1, id2) 

// Input  = id1 : identifier 1, id2 : identifier 2 

// Output  = split identifier 

00  split_id = 0 ; 

01  FOR (i = max_length – 1; i >= 0; i -= 1) { 

02      idtemp = 1 << i ; 

03      split_ id |= id2 & idtemp ; 

04      IF ((id2 & idtemp) != (id1 & idtemp))  BREAK ; 

05  } 

06  RETURN split_id ; 

Figure 3: Algorithms to find the shortest split identifier

We use additional information about the length of the
identifiers when putting the compressed identifiers into the
index nodes. The length information is also used when the
identifiers are read from the index nodes. The identifiers are
compressed only when they are stored on disk. When pro-
cessing in memory, we always use the full length of identi-
fiers. To compress identifiers, the length information is pre-
defined as well as the size of the identifiers. Suppose that
the size of identifier is 64 bits and the length of an identifier
is 4 bits. Each value of 1 in the length information reflects
4bit length of compressed identifier. This means that the
identifier is compressed with 4 bits as a unit. A length value
0000 presents that the length of the identifier is 4 and the
length value 0001 presents that the length of the identifier
is 8. Both size and length of identifiers are adjustable pa-
rameters to be initialized during the system initialization.
Given that there is a tradeoff between the length value and
the storage cost, it is important to discuss the guidelines for
determining the optimal length value of an identifier.

3.4. Maintaining the index structure

When an OCG is split due to an overflow over the spec-
ified cap of group size in terms of the number of spatial
objects, we need to decide a split key in order to split this
OCG into two OCGs with smaller spatial regions. To keep
the optimal performance of the index structure, we need to
consider the compression efficiency and the storage utiliza-
tion and make a better tradeoff. To achieve better compres-
sion efficiency, we want this split key to be as short as pos-
sible since it will serve as the prefix. However, to obtain

better storage utilization, an OCG should be split into two
OCGs with equal or similar number of spatial objects. Thus
the key is decided by the position of the median object on
the ordering sequence. One way to incorporate good com-
pression efficiency into account when choosing the optimal
split key is to balance storage utilization with compression
efficiency. For example, the split key is decided as short as
possible within 1/3 median identifiers of the entries in an
OCG. If ids is the identifier of entry at n/3 lowest position
on the ordering sequence and ide is the identifier of entry
at 2n/3 lowest position on the ordering sequence, then the
split key is decided by IDshortest(ids, ide) in Equation 2.

In the minimum storage utilization, the first method
(50%) is better than the second methods (33%). However,
as shown in Section 3.3, the fan-out of index node in the
second method is twice more than that in the first method.
In the other words, although the storage utilization in the
second method is less than in the first method, the number
of entries in the second method is in general bigger than
the first method. Figure 4 visually shows the difference
between the cases. Figure 4a presents the case only con-
sidering storage utilization. In the case, according to the
increase of objects, the OCGs are split and the split key is
decided by the median objects in the ordering sequence. so
two groups are made and the difference number of objects
between the two groups are equle to or less then 1. Fig-
ure 4b presents the case considering both storage utilization
and compression efficiency.
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Figure 4: Index maintenance by tradeoff between storage
utilization and compression efficiency

3.5. Query Processing with OCG-index

In this section we describe the algorithm for processing
queries utilizing the proposed index. Due to space con-
straint, we provide the pseudo code for range query pro-



cessing algorithm in Figure 5. kNN queries can be seen as
applying a ranking method that sorts the range query results
by the ascending order of their distances to the query fo-
cal object. In the range query processing algorithm, we first
calculate the smallest identifier min id and the largest iden-
tifier max id overlapped with the given range in the man-
ner similar to the quad tree search style (line 01∼02). The
algorithm starts with finding a node including min id and
retrieving objects that match the query q in the node (line
04∼05). Since the index structure is B+-tree, we just use
next link of the node to find the next node. If the next node is
overlapped with the range given by query q, we continue to
search objects for q in the next node. This process continues
until the next node is no longer related to q (line 06∼09). If
the identifier of the next node is larger than max id, the
algorithm terminates. Otherwise, it is continued by find-
ing the next smallest identifier which is an identifier of the
cell overlapped with q and the identifier is bigger than the
identifier of node searched previously. Equation 3 presents
the definition of the next smallest identifier IDnext search,
given a query q and the smallest identifier at least id. c de-
notes a cell in the grid matrix.

IDnextsearch(q, id) = {ci.id|ci.id ≤ cj .id,
ci ≥ id, ∃ci ∈ q.region,∀cj ∈ q.region} (3)

Range_query_processing( index, q) 

// Input  = index : an index structure, q : a query   

// Output  = result set 

01 min_id = the smallest identifier of cells overlapped with q; 

02 max_id = the largest identifier of cells overlapped with q; 

03 WHILE ( true) { 

04     n = find a node including min_id in index; 

05     result_set <- retrieve objects overlapped with q in n; 

06     WHILE ( n.next_node is overlapped with q) { 

07         n = n.next_node; 

08         result_set <- retrieve objects overlapped with q in n; 

09     } 

10     IF ( n.id > max_id ) BREAK;  

11     min_id = find the next smallest identifier of cells 

                 overlapped with q; 

12 } 

13 RETURN result_set; 

Figure 5: Algorithm for processing range queries

4. Performance Evaluation

In this section, we evaluate the performance to show
the characteristics of OCG-index in various environ-
ments. As the ordering method, Z-order and Hilbert
curve motheds are used. We also compare the perfor-
mance according to the compression. The evaluation shows
the performance difference in comparison with R*-tree,
TPR*-tree and Grid structures. Z OCG UNCOM and

Z OCG COM denote the OCG-index with Z-order, and
OCG-index with Z-order with compression, respectively.
H OCG UNCOM and H OCG COM denote the OCG-
index with Hilbert curve, and OCG-index with Hilbert
curve with compression, respectively. For Grid struc-
tures, we measured the performance with various resolu-
ation among 512×512(GRID512), 256×256(GRID256),
128×128(GRID128), 64×64(GRID64). We evaluated the
storage cost, query processing cost and update cost accord-
ing to the number of objects, size of queries and velocity
of objects. To see the performance according to the density
of objects, two different environments are used. Figure 6
shows the environment according to the distribution of ob-
jects. Figure 6a and Figure 6b shows random and skewed
objects distribution, respectively. As default settings, the
size of a disk block assigned to a node is set 2048 bytes and
the number of objects inserted into index strucutres is set
1,000,000(1M). The data space is 1000×1000.

(a) Random distribution (b) Skewed distribution

Figure 6: Object distribution

We first evaluated the storage cost OCG-indexes, R*-
tree, TPR*-tree and Grid structures. To measure the stor-
age cost, we count the total number of nodes for each in-
dex structures required. Figure 7 presents the comparison.
Figure 7a shows the storage cost in random object distri-
bution and Figure 7b shows the storage cost in skewed ob-
ject distribution. It shows that tree-based indexes require
simular storage cost while the storage cost of Grid is ex-
ponentialy increased according to the increase of resolu-
tion. We omitted the storage cost of Z OCG COM and
Z COG UNCOM because they have almost the same num-
ber of node with regardless of ordering methods.

To show the benefits of OCG-indexes, we compared the
number of index nodes for each index structures required.
Figure 8 shows the total number of index nodes for each in-
dex structure requires in random object distribution accord-
ing to the number of objects. H OCG UNCOM reduces
about 65% of index nodes than R*-tree. H OCG COM

reduces about 80% of index nodes than R*-tree and 30%
of index nodes than H OCG UNCOM . We also measured
the average number of entries in an index node to show the
storage utilization in terms of index nodes. Figure 8b shows
the average number of entities. The number of entries de-
pends on the fan-out of node that the index structures allow.
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Figure 7: Total storage cost
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Figure 8: Storage cost in terms of index nodes

The performance difference is from the size of each entry.
Each entry in OCG-index includes only the identifier and
address of a child node and the length value of the identifier
while each entry in R*-tree includes 2 coordinators and the
address of chlid node address, and each entry in TPR*-tree
additionally includes the two vectors for each dimension.
H OCG UNCOM and H OCG COM increase the fan-out
of index nodes about 4 times and 8 times and than R*-
tree, respectively. Since Grid structures does not have index
nodes, we did not compare the number of index nodes with
Grid structures. The numbers of Z OCG UNCOM and
Z OCG COM are almost the same as H OCG UNCOM

and H OCG COM . So that we omitted OCG-indexes us-
ing Z-order in these evaluations.

We compared the range query processing cost accord-
ing to the size of queries as shown in Figure 9. We per-
formed 100 queries in both random and skewed object en-
vironment. GRID256 is chosen to be compared because
256×256 was the optimal resolution in this evaluation en-
vironment, heuristically. As the cost of query processing,
we measure the number of disk I/O while processing the
queries. In the random distribution environment, R*-tree
has the worst performance and GRID256 is the best per-
formance result. all the OCG-indexes are in the middle as
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Figure 9: Query processing cost according the size of
queries

shown in Figure 9a. However, in the skewed distribution
environment, GRID256 becomes worse as shown in Fig-
ure 9b. H OCG COM and Z OCG COM become more
efficient than GRID256. In overall, OCG-indexes improve
the performance of processing queries. OCG-indexes with-
out compression save 5∼10% of cost and OCG-indexes
with compression save 15∼30% of cost from that of R*-
tree. As shown in Figure 9 grid structure is very good in
random distribution environment, but it is not efficient in
skewed distribution environment.

We compared the query processing cost with TPR*-tree
on moving range queries according to the speed of ob-
ject movements in both random and skewed distribution
environments. We performs 100 range queries for 10sec
future from the queries issue and set the size of queris
10×10. Figure 10 shows the perfomance comparison. In
overall, OCG-indexes show the better performance than
TPR*-tree. OCG-indexes without compression save about
5∼10% of cost and OCG-indexes with compression save
about 15∼25% of cost from that of TPR*-tree.

For the comparison on update cost, we measured the
number disk I/O while update the location of objects ac-
cording to the speed of object movement in both random
and skewed distribution environments. Figure 11 shows the
evaluaton of the cost. Since R*-tree is desigined for static
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Figure 10: Moving query processing cost according to the
size of queries with TPR∗-tree
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Figure 11: Update cost according to the speed of objects

objects and sqatial queries, it suffers from the update of ob-
jects. Grid structuer shows the best performance on the up-
date of objects’ locations. It is because grid structure access
the data node directly in hash manner. If the gird structure
is optimized the most of update are done with accessing just
one data node. The performance of optimized grid can be
idle. In overall, OCG-indexes are in the middle of R*-tree
and grid but they are very close to the idle performance,
relatively. In this environment, OCG-indexes with com-
pression save about 10% of update cost than OCG-indexes
without compression.

5. Conclusion

Advances in ubiquitous connectivity and location sens-
ing technology have fuelled a rich collection of location
based services (LBSs). Efficient spatial indexing techniques
are one of the most effective optimization methods to im-
prove the quality of mobile services. In this paper, we argue
that the index structure for LBSs should be efficient for spa-
tial query processing in the presence of frequent location

updates. We have introduced the concept of spatial order
sequences and the concept of Ordered-Cell Group (OCG)
and design a OCG based grid index structure (OCG-index)
through a number of density-conscious optimizations. We
speed up the search efficiency of OCGs by effective com-
paction of identifiers of OCG cells to maximize the fan-
out of index node and decrease the depth of the index. In
addition, we develop an efficient query processing algo-
rithm that can effectively utilize OCG cells to speed up the
processing of spatial queries. Our experimental results are
compared with R*-tree, TPR*-tree, and grid structures. We
show that OCG-index improves R-tree variant indexes in
every aspect we measured and its performance is close to
the optimized grid structures.
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