
 1

Secure Cloud Storage Service with An Efficient DOKS Protocol

ZhengTao Jiang

Communication University of China

z.t.jiang@163.com

Ling Liu

Georgia Institute of Technology

lingliu@cc.gatech.edu

Abstract—Storage services based on public clouds provide

customers with elastic storage and on-demand accessibility.

However, moving data to remote cloud storage also raises

privacy concerns. Cryptographic cloud storage and search

over encrypted data have attracted attentions from both

industry and academics. In this paper, we present a new

approach to constructing efficient oblivious keyword search

(OKS) protocol, which permits fast search (i.e., sub-linear time)

and relatively short ciphertext, while providing provably

strong privacy for both users and cloud storage service

providers. Previous OKS protocols have ciphertext size linear

in the number of keywords, which consume much storage

space and relatively long searching time. We formally define a

Disjunctively Oblivious Keyword Search (DOKS) protocol

realizing oblivious keyword search with the ciphertext size

constant in size of keywords, which is significantly less than

that of previous OKS protocols. Our approach improves both

the privacy and efficiency of existing OKS protocols. With

DOKS, adversary cannot distinguish two search keywords

submitted by users, and cannot know the relations between

ciphertext of documents and search keywords. A search

keyword cannot be reused by adversaries. Users can get the

matching documents without revealing statistical information

on search keywords.

Keywords-Cloud storage; searchable encryption; privacy;

provable security; oblivious keyword search; DOKS

I. INTRODUCTION

Cloud computing and its pay per use elastic pricing and
utility model has made outsourcing storage and computing
needs more attractive than ever. By moving computing and
storage needs to the cloud, users can avoid the high cost of
storage and computing infrastructure ownership and achieve
availability and reliability at a relatively low cost. However,
outsourcing storage and computing to a public cloud
infrastructure also faces some new challenges since users and
cloud storage providers (either IaaS or SaaS like databases)
are not located in the same trust domain. Thus, both data
privacy and access privacy must be maintained as a part of
service level agreement (SLA) with high level of guarantee.
This makes security and privacy of outsourced data and
private information retrieval one of the biggest challenges for
outsourcing to cloud storage services.

A. Requirements for Secure Outsoutcing

There are two important challenges in secure
outsourcing. First, the stored data must be protected against
unauthorized access. Second, both the data and the access to
data need to be protected from cloud storage service
providers (e.g., cloud system administrators). In these
scenarios, relying on password and other access control

mechanisms is insufficient. Cryptographic encryption
mechanisms are typically employed. However, simply
having encryption and decryption implemented in the cloud
database systems is insufficient. In order to support both
challenges, data should be encrypted first by users before it
is outsourced to a remote cloud storage service and both data
security and data access privacy should be protected such
that cloud storage service providers have no abilities to
decrypt the data, and when the user wants to search some
parts of the whole data, the cloud storage system will provide
the accessibility without knowing what the portion of the
encrypted data returned to the user is about.

In summary, a cloud storage service should meet the
following three security and privacy requirements:

(a) General data security: The data should be securely
stored in database hosted by the cloud storage service such
that any unauthorized users cannot access it;

(b) Database security: A user is allowed to retrieve some
data by keyword search techniques, but the user cannot get
more content than the searching result;

(c) User query privacy: The user’s query preference may
be sensitive, and the cloud storage provider and its database
server should not learn any useful information about which
search keyword was submitted by the user and which data
has been obtained by the user.

In addition to meeting the security and privacy
requirements outlined above, the cloud storage service
should continue to honor the generally accepted service level
agreements (SLAs). That is, the cloud storage service should
provide high computation and communication efficiency and
support query-based access to allow users to selectively and
privately retrieve any desired segment of the whole data on
demand. Finding a good security-functionality tradeoff for
outsourcing is a challenging research problem, which has
received a great deal of attention recently [1,2].

Cryptographic storage techniques are widely recognized
as an approach that holds the potential to meet the above
requirements. The main advantage of cryptographic storage
services is that its security properties are derived from
cryptography, as opposed to legal mechanisms, physical
security or access control, and can be proved in a formal
manner. A simple solution for secure cloud storage is to
encrypt the whole data and then store it in a database. To
query any part of the data, one must download the whole
encrypted data for decryption. Its computation and
communication complexity is high, and it fails to meet the
database security and user query privacy requirements [3].

Searchable encryption schemes are designed to
efficiently solve security problems for remote cryptographic
storage while enabling search for the expected contents
corresponding to an encrypted keyword securely. The area of

 2

searchable encryption has been identified by DARPA as one
of the technical advances that can be used to balance the
need for both privacy and national security in information
aggregation systems. It also provides value-added features to
many business services, such as Google Desktop with the
ability of searching a client’s data across several computers
without sacrificing the client’s privacy.

B. Searchable Encryption Techniques for Cloud Storage

Searchable encryption techniques are commonly used to
efficiently meet the above requirements. There are several
types of searchable encryption schemes in the literature, each
of which is appropriate to a particular application scenario.

Symmetric searchable encryption (SSE) scheme
introduced in [4] is suitable for the setting where a party
searching over the data is also the one who generates it.
Such scenario is referred to as single writer and single reader
(SW/SR) [6].

Asymmetric searchable encryption (ASE) is designed for
the scenario where a party searching over the data can be
different from the party who generates it [5]. Such scenario
is referred to as many writers and single reader (MW/SR)
[6]. Since writers and readers can be different, ASE schemes
are more suitable for the setting with a larger number of
users.

Both SSE and ASE protocols did not completely solve
the problem that one can privately retrieve segments of
encrypted data from remote databases. Since the database
server can learn by passive logging with statistical inference
which encrypted keyword matches the submitted search
keyword and which encrypted document is retrieved.

Oblivious keyword search (OKS) protocols are aiming at
realizing the searching capabilities of searchable encryption
(SSE, ASE) protocols while preserving privacy of both
writers (requirement (b)) and readers (requirement (c)) in a
strong version, which is not realized by SSE or ASE. The
notion of OKS protocol was first introduced in [7], based on
the assumption that remote storage service providers and
users do not trust each other absolutely, and one party may
try to learn sensitive information of the other party when
conducting transactions. OKS hides statistical information on
search keywords by not leaking keyword match results to
databases or eavesdroppers.

However, to improve the practical applicability of OKS
protocols, the following two issues need to be addressed: (i)
Inefficient communication, computation and storage. In
previous OKS protocols, each keyword is used to generate an
encryption key, which is then used to encrypt the documents,
so the number of ciphertexts and encryption keys to be
maintained is equal to the number of keywords to be used for
search over the encrypted documents. Usually the number of
keywords is large, these protocols cost large storage space,
high server computation time and high communication
bandwidth. (ii) Strong security guarantee. To achieve a
confident level of OKS security in a provable manner, proper
formal security models of characterizing OKS attacks and for
classifying common behaviors of adversaries are needed.

C. Scope and Contribution of the Paper

In this paper, we attempt to address the above two
challenges by designing a new approach to constructing
efficient oblivious keyword search (OKS) protocol, which
permits fast search (i.e., sub-linear time) and relatively short
ciphertext, while providing provably strong privacy for both
users and cloud storage service providers. The smaller-
ciphertext-size property is achieved by corresponding one
ciphertext to a keyword set. The provably-strong-privacy
property is achieved by reducing adversary’s ability of
decrypting and distinguishing search keywords to discrete
logarithm problem (DLP) and Diffie-Hellman (DDH)
problem respectively.

Concretely, previous OKS protocols have ciphertext size
linear in the number of keywords, which consume much
storage space and relatively long searching time. We
formally define a Disjunctively Oblivious Keyword Search
(DOKS) protocol, which realizes oblivious keyword search
with the ciphertext size constant in size of keywords,
significantly less than that of previous OKS protocols. Our
approach improves both the privacy of and efficiency of
existing OKS protocols. We show that DOKS is provably
secure against adaptive chosen keyword attack (CKA) in
random oracle (RO) model, which overcomes security flaws
occurred in previous OKS protocols. With DOKS, any
adversary cannot know the relations between ciphertext of
documents and search keywords. Furthermore, a search
keyword can not be reused by an adversary and users can get
the matching documents without revealing any statistical
information on search keywords.

The DOKS protocol has many possible applications. For
example, a user Alice wants to search for some documents
provided by other users or organizations from which Alice
obtained authorization. DOKS will ensure that the search
preference of Alice and other unrelated documents are
perfectly protected. This type of secure search over remote
storage systems can be useful for electronic health records
(EHR) systems, in which a patient (or a physician) wants to
search for sensitive treatment information about the patient(s)
for a particular disease diagnosis from EHR databases hosted
in some third party storage service providers.

II. OVERVIEW & PROBLEM STATEMENT

In this section we give a brief overview of existing
searchable encryption protocols and present the problem
statement for the DOKS protocol development.

A. Basic Searchable Encryption Protocols

There are two basic types of searchable encryption

protocols: one is based on symmetric encryption schemes,

and the other is based on asymmetric (public key)

encryption schemes.

1) Symetric Searhable Encyrption (SSE)
The first construction of SSE scheme is proposed in [4].

It works as follows. Given a set of documents to be
outsourced to a cloud storage service, each document is
modeled as a sequence of words, represented by (w1, w2,…
wi,…, wl). SSE can be used by a user U to encrypt each

 3

document word by word such that the ciphertext of all words
are stored in the remote database server sequentially. U can
search for those documents that contain a search word w if
its ciphertext matches one of the stored cipher blocks for the
documents in the remote document database. Below we
describe how the encryption and search are performed: First,
a user U generates an encryption key k´´ for a keyword wi (i
= 1, 2, …, l), and gets

  iiiki RLwEX ,)(,

where Xi has n bits, Li and Ri denote the first n-m bits and the
last m bits of Xi respectively.

U generates an encryption key k´ for matching
verification, and computes ki = fk´(Li). Then U generates a

random number Si and computes)(| | ikii SFST
i

 . The final

ciphertext for wi is Ci = Xi ⊕ Ti. Ci is stored in the database
server DS.

To search for documents containing a keyword w, U
computes X = Ek´´(w) and k = fk´(L), and sends <X, k> to DS.
This allows DS to search for w without revealing w itself.
Any ciphertext stored in the database server DS is composed
of cipher blocks, Ci, (i = 1, 2, …N). DS sequentially
computes Si||Fi = Ci⊕Xi, and F = Fk(Si).

If F = Fi, it means that w is contained in this document
with high probability.

To decrypt the document, U generates Si using
pseudorandom generator (since U knows the seed)
sequentially, then he recovers Li by XORing Si with the first
n-m bits of Ci. Knowing Li allows U to compute ki and get Xi
= Ek´´(wi). Finally, U gets wi from Ek´´(wi) based on k´´.

Since SSE is based on symmetric encryption schemes,
and encryption of the search words and the corresponding
matching documents is deterministic under one encryption
key. SSE has the following limitations:

(1) It is only suitable for single-user environment in
which a user who generates the ciphertext for storage is the
same user who submits a searching task.

(2) Several secrete keys must be stored on the user side.
U must store at least three secret keys: (i) k´´ for

encrypting/decrypting words w1, …, wl and search word w;
(ii) k´ for calculating the verification function fk´(L); (iii)
Seeds for generating random verification (and masking)
values S1, …, Sl.

(3) Low privacy protection for users.
Since X = Ek´´(w) and for efficiency consideration, k´´ is

not changed according to each word of the documents to be
encrypted, it cannot hide statistical information of words
very well [4]. The DS server can get exact positions and
frequency of search words in any document, even though he
cannot learn the exact content. Furthermore, if a newly
encrypted document is added to the database, the server can
check whether it contains a particular keyword (as well as its
exact positions, frequencies, etc.) that has been submitted by
users in the previous queries.

(4) Low distinguishability guarantee for documents.
After receiving search words, DS can distinguish two

documents by checking the inclusion or the positions of the
encrypted data being queried by search words.

(5) Keyword encryption is of coarse granularity.

Since documents are encrypted word by word
sequentially by stream cipher, if two words needs to be
exchanged, some new words need to be added or some
existing words need to be removed in a document, the whole
document must be re-encrypted.

These limitations motivate the development of ASE.

2) Asymetric Searchable Encryption (ASE)

Motivated by the limitations of SSE, [5] introduced the

asymetric searchable encryption (ASE) protocol using public

key encryption. For example, Bob sends encrypted emails to

Alice using Alice's public key. Both the email contents and

the keywords are encrypted.The mail gateway cannot know

the keywords and hence cannot make routing decisions or

implement searching for customers. Their goal is to enable

Alice to give the gateway the ability to test whether a

keyword is included in the email, but the gateway should

learn nothing else about the email. Another advantage for

ASE is that it is suitable for the setting where the party

search over encrypted data is different from the party who

encrypts the data. Concretely, ASE works as follows.
 (1) To send a message M to Alice with keywords w1, …,

wm, Bob sends

EApub (M) || ASE(Apub,w1) || || ASE(Apub,wm)

to the gateway, where each keyword wi is encrypted under
Alice's public key Apub.

(2) Alice sends the gateway a certain token Tw* that
enables the gateway to test whether one of the keywords
associated with the message is equal to the search word w
submitted by Alice. Namely, Given ASE(Apub, w) and Tw* the
gateway can test whether w

*
 = w.

ASE protocols are more suitable for multi-user setting
than SSE.

Even though the encryption ASE(Apub, wi) is probabilistic
for wi whereas the ciphertext of SSE is deterministic, ASE
still has some security flaws for preserving privacy.

1) Leaking frequency of search words.
The token Tw is deterministic on w and the matching

result is known to the gateway server. It knows the exact
frequency of keywords queried by the users, and knows how
many documents contain such keyword, which may suffer
from dictionary attack.

2) Adversaries can check whether a new document
contains a certain keyword queries before.

Without authorization, any adversary (including the
server) can check whether a new document contains a certain
keyword that has been queried.

Another limitation of ASE is that it only focuses on
encryption of keywords and does not provide a concrete
method on encrypting documents.

To overcome the limitations of both SSE and ASE, [6]
designed OKS protocols by hiding statistical information and
providing stronger privacy protection for both users and
remote database servers [7,8]. OKS is applicable for the
setting where one party uploads its encrypted data and many
authorized users can download the portions of the data
containing particular search keywords in an oblivious and yet
more efficient manner. We refer to such scenario as single

 4

writer/many reader (SW/MR), which differs from the setting
of SSE (SW/SR) and ASE (MW/SR).

B. Oblivious Keywork Search (OKS) Protocols

In OKS, a database server possesses sensitive documents.
It allows a user to search and retrieve documents containing
some keywords chosen by users in an oblivious manner such
that both user query privacy and the database security are
guaranteed. By user privacy, we mean that both adversaries
and database servers will learn nothing about the keywords
submitted by users and which documents has been retrieved.
By database security, we mean that a user can only get the
documents that he has searched for, and cannot learn any
more information on other documents. We below formally
define these concepts.

Definition 1 (Correctness for OKS) Let)(*
iwSearch

denote the real search result which is a set of unencrypted

documents in the database server DS contain a search word

wi
*
. After running the OKS protocol on the user’s input wi

*
, if

the database DS also outputs the same search results

as)(*
iwSearch , we say that the OKS is correct.

Definition 2 (User Privacy in OKS) An OKS protocol is

secure for a user, if for any malicious provider DS, the view

of DS for two keyword strings),...,(**
1 kww and),...,(1 kww 

is computationally indistinguishable when the following

holds:),...,(**
1 kww ≠),...,(1 kww  .

Definition 3 (Database Security in OKS) An OKS
protocol is secure for a database, if the user can only get her

searching result)(),...,(**
1 kwSearchwSearch , and cannot get

any more useful information about other documents with
non-negligible advantage.

Definition 4 (OKS Security) An OKS protocol is secure
if it satisfies both user security and database security.

OKS protocols are two party protocols between a
database and a user, which performs encryption and search
over encrypted data with user privacy and database security
guarantee through a two-phase process: commit phase and
transfer phase [7].

In commit phase, the database server DS has n data
blocks, B1, …, Bn such that

Bi = (wi, ci),
where ci denotes a document or data content to be encrypted

and wi∈W (W is the keyword space) is the corresponding

keyword that will be used to search over encrypted content.
The remote database server DS commits the ciphertexts C1,
…, Cn, where Ci = Enc(ki, ci) and the encryption key ki is
generated from its corresponding keyword wi.

At each subphase, U chooses a keyword w∈W and then

initiates a key generation protocol (KGP) with database
server DS. U gets the decryption key for ciphertexts
including w in an oblivious manner.

Based on KGP, U learns Search(w), where Search(w) =
{(i, ci) | wi = w} is the set of all documents containing w as a
keyword. However, U learns nothing more than Search(w)
and DS gains no information on w.

Presently, there are mainly two ways to realize OKS: One
is based on blind signatures, and the other is based on
oblivious polynomial evaluation (OPE).

Comparing with general keyword search encryption
schemes, OKS protocols have advantages of preserving
privacy for both user and database server. However OKS
protocol also introduces disadvantages, such as high
communication and computation cost, larger storage space to
store ciphertext, since a large number of ciphertexts of
documents are generated (see next subsection for detail.).
One of the challenges for OKS is to reduce the size of
ciphertexs and its implementation cost, while preserving
provable privacy for both parties (user and database).

D. Problem Statement and Overview of DOKS

The idea of protecting privacy of user access and
ensuring database security by using secure computation has
been studied by many researchers. According to the types of
cryptographic primitives utilized in literature, OKS fall into
the following two categories: OKS constructed from OPE
and OKS from RSA.

To illustrate the problems of existing OKS protocols and
motivate the development of DOKS, we assume that the
document database consists of a set of documents, and U
wants to retrieve some of them according to particular
keywords. Thus we below classify the problem of keyword
search over documents into four scenarios:

Case 1 (1:1). Each document has only one keyword.
Namely, there is one-to-one relationship between keywords
and documents.

Case 2 (1:n). There are m keywords, and each keyword
associates with n documents. The relationship between
keywords and documents is one-to-many.

Case 3 (m:1). There are n documents, and each
document includes m keywords. The relationship between
keywords and documents is many-to-one.

Case 4 (m:n). There are n documents and m keywords,
and each document includes m keywords, each keyword
associates with n documents. The relationship between
keywords and documents is many-to-many.

Previous OKS protocols are only suitable for Case 1 and
Case 2, in which each keyword is used to generate one
encryption key for the associated document [7]. If a
document consists of m keywords (e. g., Case 3, Case 4),
then m copies of cipherctexts must be generated by m
encryption keys respectively. Therefore, the number of
ciphertext for each document is equal to the number of
keywords it contains. If the number of keywords is large, the
size of ciphertex is also large.

In Case 3 and Case 4, each document has multiple
keywords. For example, the document Doci has m keywords,
represented by the keyword set KSet(Doci) = {KWi1, ..,
KWmi}. Using existing OKS protocols for Case 3 and Case 4,
one must encrypt Doci m times, one per search word, with
encryption keys generated by KWi1, .., KWmi respectively. All
the m ciphertexts for Doci must be computed, stored and
delivered to the users who need to search over the encrypted
document collection. Since the number of keywords is often

 5

large, these protocols are highly prohibitive for Case 3 and
Case 4. Here are a list of problems faced by existing OKS:

Problem 1. Computation explosion can be caused by
large set of keywords. If each document has a large keyword
set, say on the order of thousands or more, then a large
number of keys and ciphertexts must be generated and the
documents need to be encrypted multiple times. When a new
keyword is added to a document, one more ciphertext
corresponding to this keyword must be generated.

Probelem 2. Storage space explosion can be caused by
large duplications of encrypted versions of the original
documents. If a document contains m keywords, then it must
be encrypted by m copies, using one of the m encryption
keys, one per keyword, which consumes huge storage spaces
and search cost when the number of documents is large and
the number of search words per documents is large.

Problem 3. Communication explosion can be caused by
large number of ciphertexts transferring between the remote
database server DS and each user U. A large number of
copies of ciphertexts need to be transferred from database to
users for each query service request, which consumes high
network I/O bandwidth.

Problem 4. It lacks of formal security models to
characterize and manage OKS attacks for case 3 and case 4
scenarios.

E. DOKS: Design Ideas and Main Contributions

The design of our DOKS protocol aims at addressing the
above challenges simultaneously by designing a new
efficient OKS protocol.

DOKS is more efficient than existing OKS protocols,
especially for the case 3 and case 4 scenarios. More
specifically, DOKS needs only n ciphertexts to be
transferred, while previous OKSs transfer |KSet1| + … +
|KSetn| (O(mn)) ciphertexts, where KSeti is the set of
keyword of documenti (i = 1, 2, …, n), n is the number of
document, m is the average number of keywords contained
in each document. Thus, DOKS is significantly more
efficient in terms of storage, computation and
communication performance compared with previous OKS
protocols, especially for those case 3 and case 4, thanks to its
small number of ciphertexts. DOKS is applicable to single
writer and multiple reader (SR/MR) environments, unlike
SEE, which is constrained to only the SR/SW environment,
and unlike ASE, which works for MW/SR environment (case
1 and case 2). To the best of our knowledge, this DOKS
development is among the first endeavors on developing
efficient and DLP based secure OKS protocols.

In DOKS we address the privacy property guarantee by
using a strong formal security model. We show that DOKS is
provably secure against adaptive chosen keyword attack
(CKA) in RO model, which overcomes security flaws
occurred in previous OKS protocols. The provably-strong
privacy property is achieved by reducing adversary’s
attacking ability to DLP and DDH problem respectively.
Generally speaking, cryptographic settings are deployed to
support two types of encryption schemes: integer
factorization problem (IFP) based RSA schemes or DLP
based Diffie-Hellman schemes. To the best of our

knowledge, all previous OKS protocols are constructed from
RSA or OPE schemes. Thus it is valuable to design DLP
based OKS protocols, which is suitable for cryptographic
setting of discrete logarithm based encryption.

To prove the security guarantee of DOKS, the formal
chosen keyword attack (CKA) model is introduced to
characterize OKS attackers. DOKS provides strong provable
privacy for both users and database service providers against
CKA in RO model. This CKA model can also be extended to
analyze security of other previous OKS protocols.

III. DOKS PROTOCOL BASED ON DL-ENCRYPTION

In this section we first introduce the basic definitions and
security model for the DOKS protocol and then describe two
phases of the DOKS protocol: encryption and upload phase,
download and decryption phase.

A. Definitions and Security Models

The DOKS protocol is constructed using discrete
logarithm problem (DLP) based Diffie-Hellman scheme.
Thus before we introduce the DOKS protocol, we provide
definition of some basic concepts.

Definition 5 (The discrete logarithm problem DLP)

Given (g, X, Y, Z), where g, y∈Zp, to find x such that

g
x
 = y mod p,

is called discrete logarithm problem (DLP).
The DLP assumes that there does not exist any

polynomial-time algorithm that can solve DLP with non-
negligible advantage.

Definition 6 (The Computational Diffie-Hellman CDH)
Given (g, X, Y, Z), where X = g

x
 mod p and Y = g

y
 mod p,

without knowing x and y, to compute
Z = g

xy
 mod p,

is called computational Diffie-Hellman (CDH) promlem.
 Similarly, CDH assumes that there exist no polynomial-
time algorithms that can solve CDH problem with non-
negligible advantage.

Definition 7 (The decisional Diffie-Hellman DDH)

Given (g, X, Y, Z), where g∈Zp, X = g
x
 mod p and Y = g

y

mod p, to decide whether

Z = g
xy

 mod p,
is called decisional Diffie-Hellman (DDH) problem.

DDH also assumes that there exist no polynomial-time
algorithms that can solve DDH problem with non-negligible
advantage.

Definition 8 (DOKS) A disjunctive oblivious keyword
search protocol based on DLP, denoted by DOKS, consists of
the following polynomial time algorithms:

 KeyGen(1k
): Generates system parameters p, q∈Zp, such

that q | p – 1, and g is of order q. User U’s public/private
key pair is pk/sk.

 Encode(KSet): Generates a random polynomial P(x) in

commitment phase, such that P(hw) = t, where hw = H(w)

is a hash function and w∈KSet, t is a random number,

and KSet is the set of keyword associated with a
document. Documents are encrypted based on the key
material t in commitment phase.

 Blind(w*
): Blinds a search word w

*
 with U’s public key.

 6

 Encrypt(Blind(w*
)): Insert decryption key materials into

Blind(w*
), and get c = Enc(Blind(w*

), pk).

 Decrypt(c, sk): Decrypts c with sk to get a decryption key

according to w
*
.

 Decode(E): Based on Decrypt(c, sk), decodes data

generated in commitment phase.

The DOKS protocol relies on the following steps to
encrypt data before uploading it to the remote cloud storage
and then to enable search over encrypted data by keywords:
(1) The database server S encodes a set of keywords of each

document to be a secret polynomial P(x); then the
document is encrypted based on parameters of P(x).

(2) U submits a search word w to search for documents
containing w.

(3) U initiates a blind key generation protocol and gets the
decryption key.

(4) If a document contains w as a keyword, U can decrypt the
corresponding ciphertext.

We have mentioned that DOKS protocols are secure
against CKA in RO model. It provides strong provable
privacy of both users and database service providers. Below
we define the chosen keyword attack (CKA) model.

Definition 9 (CKA) Given a DOKS protocol, DOKS =

(KeyGen, Encode, Blind, Encrypt, Decrypt, Decode), and the set

of public parameters generated by KeyGen, the model of

chosen keyword attack (CKA) works as follows.
In the attack game, the adversary U´ interacts with the

simulator Sim, who simulates database server, through
queries in RO model.

(1) Sim generates n strings E1, ..., En in the commitment
phase.

(2) U´ queries Sim with the search words, and Sim
simulates the database server as in the real world.

(3) Sim generates a challenging ciphertext E.
(4) U´ and Sim repeat (2).
(5) At the end of the attack game, U´ outputs the

plaintext c of ciphertext E.
U´ wins the attack game if c is a valid plaintext of E. The

advantage of an adversary is defined as the probability it

wins the game. An adversary is said to be (, t, qw)-attacker,

if it has advantage at least  in the above game, runs in time

at most t, and make at most qw hash queries, where ∈[0, 1]

is a real number.
Definition 10 (CKA security) An OKS scheme is said to

be (, t, qw)-secure in the sense of chosen keyword attack

(CKA), if no (, t, qw)-attacker exists.

B. DOKS Two Phase Protocol

DOKS protocol is a two-phase protocol with upload
phase and download phase. The upload phase is also called
commit phase. The data owner (writer) will first encode and
encrypt all the documents before uploading them to the cloud
storage. A commitment processor (CP) is used to carry out
this task by following the phase I of the protocol. The second
phase is called download phase or transfer phase, in which a
reader U who is authorized by the writer can query over the
encrypted data hosted in the cloud database server by having

a download processor (DP) sending blinded search word(s)
to the remote database server DS. U can download and
decrypts the matching ciphertexts. DP will carry out this task
by following the phase II of the protocol, which gets
decryption keys for particular documents obliviously from
CP based on a blinded search word. DP also generates
public/secret key pairs for user U.

Let D = {(w11, w12, …, w1m; c1), …, (wn1, wn2, …, wnm;
cn)} denote the collection of n documents to be uploaded to
the cloud database, where m is the rank of keyword field, ci
is the data to be searched for, and wi1, wi2, …, wim are the m
keywords corresponding to ci (1 ≤ i ≤ n). Thus D contains a
total of mn search words.

The concrete DOKS protocol works as follows:
System public parameter (KeyGen): Generate two large

prime integers p and q, such that q | p-1. g∈Zq
*
 is of order q.

G is a pseudo-random generator. Y = g
µ
 mod p is U’s public

key, and µ is U’s private key.

Input: CP: D = {(KSeti; ci)}i∈[n], where KSeti = (wi1, wi2,

…, wim), and wij are not necessarily distinct (1 ≤ i ≤ n, 1 ≤ j ≤
m), [n] denotes the set {1, 2, …, n}; DP: a search word w.

Output: DP: ci, if w∈KSeti; nothing otherwise.

(1) Upload and Data Encryption

At Upload Phase (Commit Phase), CP encodes keywords,
encrypts corresponding documents as ciphertexts and
attaches some metadata (e.g., keywords, types, access
models, etc), and commits ciphertext of documents and
metadata to the cloud storage server. CP encodes documents
as polynomials using a pseudorandom generator.

Commit Phase (Encode):
The CP performs three tasks. First, CP chooses two

random numbers ri, ti∈Zq
*
 for each document Di = (wi1, wi2,

…, wim; ci), i=1,…,n; and then computes hash value H(wij) =
xij, then Di is encoded to be a polynomial:





m

j

j
ij

m

j

iijii xatxxrxP
01

)()(.

Therefore, each keyword is one root of Pi(x) – ti = 0, and can
be used as a token to generate the decryption key.
 Second, CP uses a pseudorandom function G to encrypt
the document content (ci||0

l
) in an XOR way:

Ei = G(Ti||i)⊕(ci||0
l
),

where pgT it
i mod , || denotes concatenation, 0

l
 is a l-bit

string. The 0-sequence checks validity of the content ci.
 Third, CP uploads the ciphertexts of the documents, E1,
E2, …, En to the cloud database server DS. Without knowing
the key Ti, any adversary cannot get ci.

(2) Data Download and Decryption

At Download Phase (Transfer Phase), user U can get
sensitive documents containing keyword w, without letting
DS know what he is downloading.

U (DP) blinds w with his public key, Blind(w), and sends
it to the server, who knows nothing about w.

DP generates Enc(Blind(w)) by inserting decryption key
information into Blind(w).

 7

On getting Enc(Blind(w)), Alice unblinds Enc(Blind(w))
and gets the corresponding key to w. Then Alice can decrypt
documents what he wanted.

ElGamal encryption mechanism is used as the blinding
function. The probabilistic encryption and homomorphism
property of ElGamal scheme will be used to ensure semantic
security for search word w in the following form:

pgyEnc whk mod ,

in which k is random and y is the public key of user U, and
hw = H(w).

Transfer phase:
U wants to search for documents associating with a

keyword set, Kset, containing the keyword w. He invokes
DP. DP first computes hw = H(w) and then carries out the
search, download and decryption in the following 4 steps.

Step 1 (Blind). DP chooses m random integers kj∈Zq
*
 (1

≤ j ≤ m), and computes

pgK jk

j mod , pgyEnc
j

wj hk

j mod .

Then sends (K1, Enc1), …, (Km, Encm) to CP.
Step 2 (Encrypt). CP uses the homomorphism property of

ElGamal encryption to compute

pgyEncghPEnc wi

m

j
jij

iji hP
kam

j

a

j
a

wi mod)())((
)(

1

10


 



,

and computes pgA ija

ij mod , j = 0, 1, …, m.

CP sends Enc(P1(hw)), …, Enc(Pn(hw)) and Aij (1 ≤ i ≤ n,
0 ≤ j ≤ m) to DP. This step aims at hiding statistical
information on search words to ensure user access privacy.

Step 3 (Decrypt). DP has U’s private key µ and knows kj, j

= 1, 2, .., m, so it can use ElGamal decryption method to

recover pgT wi hP
i mod

)(
 , i = 1, 2, …, n.

Step 4 (Decode). Initially, let T = Ø. For i = 1, 2, …, n, U

computes (ai||bi) = Ei ⊕ G(Ti||i).
If bi = 0

l
, then DP succeeds and adds (w, ai) to T.

Otherwise, DP outputs a failure message.
Finally, DP has T = Search(w) as the searching result, in

which the keyword set of each document containing w.

IV. DOKS FEASIBILITY ANALYSIS

We have presented the design of DOKS protocol. One of
the important developments of DOKS protocol is to formally
prove its correctness, user security and database security.
However, due to the space constraint, in this section we give
an informal discussion on the DOKS feasibility analysis and
we refer readers to our technical report [3] for further detail.

For correctness analysis, we want to prove that there is a
high probability that DOKS will return accurate and
complete set of the results of a keyword search. Suppose that
there are n ciphertexts and l denote the number of zero in the
0-sequence which checks the validity of the decoding
process in step 4. After running DOKS protocol, the
probability that one can get the final searching result
Search(w) is at least 1–n2

-l
.

Consider two cases: (i) If the search word w submitted by
a user U is equal to a keyword belonging to the keyword set

KSeti (1 ≤ j ≤ m), then U can get the correct key information
and the correct decryption key for documents. (ii) In the case
that the search word w is not equal to any keyword of the
keyword set KSeti (1 ≤ j ≤ m), then the probability that U can
get the correct decryption key for documents is no higher
than 2

-l
.

In addition to correctness, we also need to formally prove
that DOKS preserves desired user’s security and database
security.

To achieve User’s security, DOKS protocol should
prevent any adversary, including database server S from
getting any useful information on the keyword hidden in the
ciphertext. Concretely, in step 1 of DOKS protocol, if an
adversary wants to distinguish two keywords, he will run
into the problem of semantic security of ElGamal encryption
scheme, which is intractable.

We next analyze the database’s security in RO model by
assuming that DLP is hard.

Suppose that there is a game between the simulator Sim
and an adversary. Sim simulates the encryption ability of the
server by encrypting keyword indexes and generating
ciphertexts in RO model. Based on the intractability of DLP,
it can prove that the probability that an adversary outputs the
correct plaintext is negligible.

Based on the assumption of DLP, a malicious user cannot
get any extra useful information on other documents in the
proposed DOKS protocol. In fact, by assuming that DLP is
hard, for a DLP-challenge instance, the ability of recovering
other plaintext will be reduced to guess the output value of
random oracle, which is negligible.

At Query Phase 1:
– Sim acts as S to “encode” keywords as polynomials;
– U´ submits a polynomial number of search words for

querying;
– Sim trains U´’s attack ability by answering the queries

correctly in RO model.
At Challenge Phase 2:
– U´ is given a challenging ciphertext to extract plaintext

indexed by a keywords set.
At Query Phase 3:
– U´ and Sim repeat Query Phase 1.
At Query Phase 4:
U´ outputs the plaintext of the challenging ciphertext in

Phase 2.
Furthermore, based on the assumption that DLP is hard,

the U´’s attack ability is reduced to guessing a random value,
which is negligible. □

Since a set of keywords is encoded into only one
encryption key in DOKS, DOKS only needs to maintain n
ciphertexts for the same dataset to be outsourced to a cloud
storage, instead of generating and storing mn ciphertexts,
which is expensive in terms of storage, computation and
communication, especially when the number of keyword (m)
and the number of ciphertexts (n) are large. Furthermore,
users do not have to download, decrypt and verify mn
ciphertexts. Therefore, even though the per encryption cost
in DOKS is slightly higher than existing OKS protocols, with
the reduction on the number of encryption/ decryptions
needed from mn to n, DOKS protocol consumes significantly

 8

less computation and transmission for both encrypting and
uploading the outsourced datasets as well as downloading
and decrypting query results, while offering higher user
access privacy and database security.

In short, DOKS needs to transfer m(n+2)|p| bits, and the
total computation is about (2n+6m+1) module
exponentiations (E) and m(n+1) module multiplications (M),
while the OKS protocol in [7] needs more than (mn+2) E;
and the OKS protocol in [9] needs more than (2mn+n+1) E.
DOKS needs to store with n ciphertexts, while [7], [8] and [9]
stores mn ciphertexts.

In the application of remote storage, some new keywords
may need to be added to the database and some keywords
may to be deleted from the database.

1) Keywords Addition
Suppose that a new keyword w is added to the document

ci, then its corresponding polynomial generated in commit
phase should be changed into







1

01

))()(()(
m

j

j
ij

m

j

iwijii xatwhxxxrxP

where hw = h(w).
Since the parameters ri, ti are not changed, odd users do

not need to initiates new implementation of the full DOKS
protocol.

2) Keywords Deletion
When a keyword w needs to be deleted from a document

ci, the symmetric key G(Ti||i) of Ei = G(Ti||i)⊕(ci||0
l
) must be

changed. The database server S chooses new parameters ri, ti
for Pi(x), and the procedure of transfer phase is not changed.

3) Multi-User Setting
Since the generation of polynomial P(x) and document

encryption do not depend on any users’ key, DOKS protocol
supports multi-user settings, namely SW/MR, which is
different from SW/SR (SSE) or MW/SR (ASE).

V. RELATED WORK

The cryptographic storage services have gained active
attention recently [6]. The main component for search over
encrypted data includes the searchable encryption (SSE,
ASE and Multi-user SSE), the attribute-based encryption,
and proofs of storage. [10] has presented two solutions to
design more efficient SSE, both of them offer more
efficiency and stronger security (adaptive SSE security) in a
multi-user setting. Their first construction is efficient non-
adaptive SSE scheme in terms of computation on the server,
and incurs a minimal cost for the user. Their second
construction achieves adaptive security. As we discussed in
the introduction section, both SSE and ASE have some
limitations: while they are proven to be a secure encryption
scheme, it is not proven to be a strongly secure searchable
encryption scheme; the distribution of the underlying
plaintexts is vulnerable to statistical attacks [5]. Recently a
public-key encryption scheme is proposed [11] to hide the
access patterns. However, it has an overhead in search time
that is proportional to the square root of the database size,
which is far less efficient than SSE[12]. Oblivious keyword
search (OKS) protocols [6,8] present alternative approaches

to address the privacy and security of access patterns.
However, as analyzed in Section 2, we have shown the
inefficiency and weaker security of existing OKS protocols.

VI. CONCLUSIONS AND FUTURE WORKS

This paper investigated new approaches for constructing
an efficient OKS protocol from DLP. Since all previous OKS
protocols are based on RSA or OPE problems, DOKS is
suitable for new security parameter settings. Formal DOKS
protocol and CKA model are initially defined to achieve
better performance and provably strong privacy. The
ciphertext size of DOKS is independent of the number of
keywords, leading to better performance than previous OKS
protocols in terms of the cost of communication,
computation and storage space. Other significant advantages
of DOKS include: semantic security for search words, full
query isolation from documents, controlled search
preventing search words from reusing, hiding statistical
information on queries.

Acknowledgement. This work is partially sponsored by grants

from NSF NetSE program, SaTC program, IBM faculty award and

Intel ISTC on Cloud Computing. The first author thanks the support

from NSF (61103199, 61003244, 61063041), BMNSF (4112052),

Engineering Program Project of CUC, IERCPGP&ME

(2012B091000060).

REFERENCES

[1] C. Wang, K. Ren, Sh. Ch. Yu, et al. Achieving usable and privacy-
assured similarity search over outsourced cloud data. INFOCOM,
2012.

[2] Y. Z. Tang, T. Wang, L. Liu, et al.. Privacy-preerving indexing for
eHealth information network, Proceedings of 20th ACM CIKM, 2011.

[3] Z. T. Jiang, L. Liu. Practical DOKS protocols without ciphertext
expansion for secure cloud storage. Technical Report, Feb. 2013,
CERCS, Georgia Institute of Technology.

[4] D. X. Song, D. Wagner, A. Perrig. practical techniques for searches on
encrypted data. Proceedings of the IEEE Symposium on Security and
Privacy, 2000, pp. 44-55.

[5] D. Boneh, G. D. Crescenzo, R. Ostrovsky, G. Persiano. Public key
encryption with keyword search. Advances in Cryptology-
EUROCRYPT'04, 2004, LNCS 3027, Springer, pp. 506-522.

[6] S. Kamara, K. Lauter. Cryptographic cloud storage. The 14th
international conference on Financial cryptograpy and data security,
2010, Springer-Verlag, pp. 136-149.

[7] W. Ogata, K. Kurosawa. Oblivious keyword search. Journal of
Complexity, 2004, Vol. 20, Iss. 2-3, pp. 356-371.

[8] M. J. Freedman, Y. Ishai, B. Pinkas, et al. Keyword search and
oblivious pseudorandom functions. Proceedings of the Second
international conference on Theory of Cryptography- TCC'05, 2005,
Springer-Verlag Berlin, pp. 303-324.

[9] H. S. Rhee, J. W. Byun, D. H. Lee, et al. Oblivious conjunctive
keyword search. Proceedings of the 6th international conference on
Information Security Applications-WISA'05, 2005, Springer-Verlag,
Berlin, pp. 318-327.

[10] R. Curtmola, J. Garay, S. Kamara, et al. Searchable symmetric
encryption: improved definitions and efficient constructions.
Proceedings of the 13th ACM conference on Computer and
communications security-CCS'06, 2006, pp. 79-88.

[11] D. Boneh, E. Kushilevitz, R. Ostrovsky, et al. Public-key encryption
that allows PIR queries. Cryptology ePrint Archive: Report 2007/073.

[12] H. F. Zhu, F. Bao. Oblivious keyword search protocols in the public

database model. ICC'07, 2007, pp. 1336-1341.

