
VScope: Middleware for Troubleshooting
Time-Sensitive Data Center Applications

Chengwei Wang, Infantdani Abel Rayan+, Greg Eisenhauer,
Karsten Schwan, Vanish Talwar∗, Matthew Wolf, Chad Huneycutt

Georgia Institute of Technology ∗HP Labs +Riot Games

Abstract. Data-Intensive infrastructures are increasingly used for on-
line processing of live data to guide operations and decision making.
VScope is a flexible monitoring and analysis middleware for troubleshoot-
ing such large-scale, time-sensitive, multi-tier applications. With VScope,
lightweight anomaly detection and interaction tracking methods can be
run continuously throughout an application’s execution. The runtime
events generated by these methods can then initiate more detailed and
heavier weight analyses which are dynamically deployed in the places
where they may be most likely fruitful for root cause diagnosis and mit-
igation. We comprehensively evaluate VScope prototype in a virtualized
data center environment with over 1000 virtual machines (VMs), and
apply VScope to a representative on-line log processing application. Ex-
perimental results show that VScope can deploy and operate a variety of
on-line analytics functions and metrics with a few seconds at large scale.
Compared to traditional logging approaches, VScope based troubleshoot-
ing has substantially lower perturbation and generates much smaller log
data volumes. It can also resolve complex cross-tier or cross-software-level
issues unsolvable solely by application-level or per-tier mechanisms.
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1 Introduction

In the ‘big data’ era, live data analysis applications are becoming easy to scale, as
well as being lucrative for or even critical to a company’s operation. For instance,
by continuously analyzing the live number of page views on its products, an e-
commerce website can run a dynamic micro-promotion strategy in which when
over 3000 customers are looking at a product for over 10 seconds, an extra
20% discount appears on the web page to increase sales. Other mission-critical
examples for e-commerce sites are click fraud and spam detection.

The importance of live data analysis is underscored by the recent creation
of real-time or ‘streaming’ big data infrastructures1, which include Flume, S4,
Storm, Chukwa, and others [5, 28, 25, 29, 11, 23, 15]. Conceptually, these are based

1 In this paper we use the term ‘real-time’ to refer a latency restriction within seconds
or hundreds of milliseconds.
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Fig. 1. A typical real-time web log analysis application composed from Flume, HBase,
HDFS, and Hadoop. In Flume, agents reside in web or application servers, collecting
logs and converting them into key-value pairs. Collectors receive and aggregate the local
results and insert them into HBase, a distributed, scalable key-value store by which
users can query the analysis results on-the-fly. HBase consists of region servers that are
equipped with a memory cache, termed MemStore, and a Write Ahead Log (WAL).
The data are first written to the WAL and MemStore before being asynchronously
persisted to the back-end distributed file system, HDFS, which is typically shared by
other data-intensive batch systems, such as Hadoop-based MapReduce codes used for
off-line, long-term analyses. Each tier can scale to 1000s of servers or virtual machines.

on the well-established paradigm of stream- or event-based processing [16, 2, 1],
but their attractiveness stems from the fact that they can be easily integrated
with other elements of ‘big data’ infrastructures, such as scalable key-value stores
and MapReduce systems, to construct multi-tier platforms spanning thousands
of servers or consolidated virtual servers in data centers. A sample platform
integrating Flume and other data-intensive systems is depicted in Figure 1.

Crucial to maintaining high availability and performance for these multi-tier
applications, particularly in light of their stringent end-to-end timing require-
ments, is responsive troubleshooting – a process involving the timely detection
and diagnosis of performance issues. Such troubleshooting is notoriously difficult,
however, for the following reasons:

– Holistic vs. tier-specific troubleshooting. As illustrated in Figure 1, each tier
is typically a complex distributed system with its own management compo-
nent, e.g. HBase or Flume masters. Developed by different vendors and/or
managed by different operation teams, tier-specific management can improve
the availability of individual tiers, but is not sufficient for maintaining an en-
tire application’s end-to-end performance, a simple reason being that issues
visible in one tier may actually be caused by problems located in another.
Needed are holistic systems to efficiently track problems across tiers.
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– Dynamic, per-problem functionality. Problems in complex, large-scale sys-
tems arise dynamically, and for each class of problems, there may be differ-
ent detection, analysis, and resolution methods. Troubleshooting, therefore,
is an inherently dynamic activity, involving on-line capabilities to capture
differing metrics and to diagnose/analyze them with potentially problem-
and situation-specific methods[36].

– Scalable, responsive problem resolution. In latency-sensitive applications like
the one in Figure 1, to maintain desired timing, troubleshooting must be
conducted both with low perturbation and with high responsiveness: issues
must be detected, diagnosed, and repaired without missing too many events
and while maintaining availability for other ongoing actions.

– System-level effects. Holistic troubleshooting must extend beyond a single
application, to also identify the system-level bottlenecks that can arise in
today’s consolidated data center or cloud computing systems.

Previous troubleshooting systems have not addressed all of these challenges.
Solutions that monitor ‘everything all the time’ [26, 39, 27], including both appli-
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Fig. 2. E2E performance slowdown (i.e. latency
increase) % caused by debug-level logging at dif-
ferent tiers of the architecture shown in Figure 1.

cation and system-level events,
do not scale for detailed diag-
nostics via say, debug-level log-
ging or tracing with consequent
high levels of perturbation. This
is shown in Figure 2, where con-
tinuously logging application-
level debugging events on all of
its nodes slows down an appli-
cation’s performance by more
than 10 times over the base-
line. Sampling [30, 31, 14, 7] for
some of the components and/or
for some period of time may
not only miss important events,
affecting troubleshooting effec-
tiveness, but will also bring about serious performance issues when using a
homogeneous and/or random sampling strategy across all nodes, e.g., with Dap-
per [31]’s use of a uniform, low (1/1000) sampling rate. In Figure 2, debug-level
logging in the Flume application’s HBase tier, the smallest portion of the system
(5/122 VMs), results in over 10 times slowdown, which is more than an order of
magnitude of the perturbation imposed by debug-level logging in the Flume tier,
which has the majority of nodes (95/122). Thus, it is inadvisable to use a high
sampling rate for the HBase tier, whereas such a strategy for the Flume tier will
likely lead to only modest additional perturbation. An alternative troubleshoot-
ing approach chosen by GWP [30] is to randomly pick some set of machines. This
may work well if that set is in the HDFS tier, but will be prohibitively costly
if the HBase tier is picked. Other approaches, like those taken by Fay [14] and
Chopstix [7] to set sampling rates based on the event population, still remain
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unaware of application level perturbation, resulting in the same issue as the one
faced by GWP. We, therefore, conclude that a more flexible system is needed for
efficient troubleshooting, where methods can differ for each behavior, tier, and
type of analysis being performed.

The VScope middleware presented in this paper makes it possible (1) to ad-
just and tune troubleshooting dynamically – at runtime – for individual tiers and
across tiers, (2) to dynamically deploy any analysis action(s) needed to under-
stand the metric data being captured in the ways required by such troubleshoot-
ing, and (3) to do so in ways that meet the perturbation/overhead requirements
of target applications. To achieve those ends, VScope, as a flexible monitoring
and analysis system, offers the following novel abstractions and mechanisms for
troubleshooting latency-sensitive, multi-tier data center applications:

1. Dynamic Watch, Scope, and Query. VScope abstracts troubleshooting as
a process involving repeated Watch, Scope, and Query operations. Respec-
tively, these (i) detect performance anomalies, (ii) ‘zoom-in’ to candidate
problematic groups of components or nodes, and (iii) answer detailed ques-
tions about those components or nodes using dynamically deployed monitor-
ing or analysis functions. VScope can operate on any set of nodes or software
components and thus, can be applied within a tier, across multiple tiers, and
across different software levels.

2. Guidance. Replacing the current manual ‘problem ticket’ mechanisms used
in industry, VScope based troubleshooting is directed by on-line ‘guidance’,
realized by the Watch and Scope operations that first detect abnormal behav-
ior, followed by exploring candidate sources for such behavior, and only then
initiate more detailed queries on select entities. The current implementations
of Watch and Scope support both ‘horizontal guidance’, to track potential
problems across different tiers of a multi-tier application, and ‘vertical guid-
ance’, to understand whether problems are caused by how applications are
mapped to underlying machines.

3. Distributed Processing Graphs (DPGs). All VScope operations are realized
by DPGs, which are overlay networks capable of being dynamically deployed
and reconfigured on any set of machines or processes, supporting various
types of topologies and analysis functionalities. First introduced in our pre-
vious work [36], where we proposed the basic architecture of DPGs and inves-
tigated an impact model of metric number/size and various DPG topologies,
along with other factors, this paper presents DPG implementation, APIs, and
commands, based on which we build VScope’s troubleshooting functionality.

VScope’s capabilities and performance are evaluated on a testbed with over 1000
virtual machines (VMs). Experimental results show the VScope runtime negligi-
bly perturbs system and application performance, and requires mere seconds to
deploy 1000 node DPGs of varying topologies. This results in fast operation for
on-line queries able to use a comprehensive set of application to system/platform
level metrics and a variety of representative analytics functions. When support-
ing algorithms with high computation complexity, VScope serves as a ‘thin layer’
that occupies no more than 5% of their total latency. Further, by using guidance
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that correlates system- and application-level metrics, VScope can locate prob-
lematic VMs that cannot be found via solely application-level monitoring, and
in one of the use cases explored in the paper, it operates with levels of perturba-
tion of over 400% less than what is seen for brute-force and most sampling-based
approaches.

2 System Design and Implementation

2.1 Goals and Non-Goals

The design of VScope is driven by the following goals: (1) flexibility: to initi-
ate, change, and stop monitoring and analysis on any set of nodes at any time,
supported by operators for dynamically building and controlling user-defined
actions for runtime troubleshooting; (2) guided operation: programmable meth-
ods for detecting potential problems and then tracking interactions that may
contribute to them, between tiers and across software levels, thereby focusing
troubleshooting in ways that can reduce overheads and improve effectiveness;
and (3) responsiveness and scalability: to deploy troubleshooting methods with
low delay at scales of 1000+ nodes.

VScope is designed to be a general platform rather than a set of ad hoc
analysis algorithms/solutions. VScope does not replace operator involvement,
but aims to facilitate their troubleshooting efforts. Further, while VScope may
be used to seek the root causes of failures, its current implementation lacks
functionality like an off-line diagnostic database and a rich infrastructure for
determining and using decision trees or similar diagnostic techniques. Also, the
methods presently implemented in VScope focus on persistent performance prob-
lems that will likely render an application inoperable after some time, i.e., when
there are frequent or repeated violations of certain performance indicators that
persist if they are not addressed. Having determined potential sources of such
problems, VScope can then trigger certain actions for mitigation or recovery, but
it assumes such functionality to be supported by other subsystems (e.g., inher-
ent to specific applications/tiers or software levels) or housed in some external
system for problem resolution [9].

2.2 VScope Overview

The system architecture of VScope is depicted in Figure 3(a). The machines
(VMs or physical machines) in the target application are managed by a server
called VMaster. Operators use VScope operations, DPG commands, or scripts
with the DPG API, in a console called VShell provided by VMaster. VMaster
executes those commands by deploying DPGs on requested machines to process
their monitoring metrics, and it returns results to operators. In detail, it starts
a DPGManager to create a new DPG, which essentially, is an overlay network
consisting of processing entities named VNodes residing on application machines.
The DPGManager dynamically deploys VNodes equipped with assigned func-
tions on specified machines, and connects them with a specified topology. VNodes
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(a) VScope Architecture (b) VScope Software Stack

Fig. 3. VScope System Design

collect and process monitoring metrics, transmit metrics or analysis results to
other VNodes or the DPGManager, which in turn relays results to VMaster.
DPGManager can initiate, change, or terminate its DPG on-the-fly.

In VMaster, the metric library defines monitoring metric types and associated
collection functions. The function library defines the user-defined and default
metric analysis functions, including those used in guidance (see Section 2.5).
The above metrics and functions can be dynamically deployed into DPGs for
various troubleshooting purposes.

The VScope software stack, described in Figure 3(b), has three layers. The
troubleshooting layer exposes basic operations in VShell : Watch, Scope, and
Query, which will be described in Section 2.3. The Watch and Scope operations
constitute the guidance mechanism, where Watch notifies the operator when and
where end-to-end anomalies happen, and Scope provides the potential candidate
nodes contributing to the anomalies. Operators (or automated decision engines)
can then use Query for in-depth analysis on those candidates yielded by guid-
ance. These operations are built upon the DPG layer. In particular, the guidance
mechanism (Watch and Scope) relies on an anomaly detection DPG and on in-
teraction tracking DPGs. The DPG layer also exposes API and management
commands to offer finer grain controls and customization. The lowest layer, the
VScope runtime, is comprised of a set of daemon processes running on all nodes
participating in the VScope system (i.e., the machines hosting the application
and additional management machines running VScope). This runtime maintains
the connections between machines and implements dynamic DPG creation and
management. In virtualized data centers, the VScope runtime can be installed
in hypervisors (e.g., Dom0 in Xen), in the virtual machines hosting the applica-
tion(s) being monitored, in both, and/or in specialized management engines [21,
24]. Our testbed uses a VScope installation in the Xen hypervisor as well as in
the VMs hosting the Flume application.
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2.3 Troubleshooting Operations

Watch. The Watch operation monitors a list of metrics on a set of nodes2, and
its current implementation applies to them an anomaly detection function in

Table 1. Arguments of Watch(*Optional)

Argument Description

nodeList∗ a list of nodes to monitor
metricList a list of metric types

detectFunc∗ detection function or code
duration∗ duration
frequency∗ frequency

order to detect and report anoma-
lous behaviors for any specified
metrics. The parameters of the
Watch operation described in Ta-
ble 1 show its ability to monitor
metrics on any VScope node, using
detection function specified with
detectFunc. Sample functions used
in our work include thresholding key performance indicators (KPI), such as re-
quest latency and statistics like those based on entropy described in [37]. The
frequency and duration of the Watch operation are also configurable. In our
Flume application, the Watch operation continuously executes on all the Flume
agent nodes, monitoring their end-to-end message latencies and detecting the
nodes with latency outliers. Internally, Watch is implemented using an anomaly
detection DPG explained in Section 2.5.

Scope. The Scope operation (described in Table 2) discovers a set of nodes in-
teracting with a particular node specified by argument source, at a time specified

Table 2. Arguments of Scope(*Optional)

Argument Description

nodeList∗ a list of nodes to explore
graph name of interaction graph
source node in interest

timestamp∗ interaction at a specific time
distance number of edges

direction∗ backward, forward or both

by argument timestamp. This op-
eration guides troubleshooting by
informing operators which nodes
are related to the problematic node
when the anomaly happens. Based
on this guidance, operators can de-
ploy a DPG on those nodes (or
some subset of them) for further
diagnosis, using the Query opera-
tion. For instance, for the Flume application, ‘horizontal guidance’ identifies the
HBase region servers with which some specified Flume agent is interacting via
a Flume collector, and ‘vertical guidance’ tracks the mappings between a phys-
ical machine and the VMs it hosts. By default, the output of Scope is a list of
nodes directly interacting with the source. distance and direction are optional
arguments, where the former specifies indirect interactions by setting the value
> 1, and the latter specifies the ‘direction’ of interaction, for instance, ‘receiving
requests from’ or ‘sending requests to’.

In a nutshell, Scope works by searching an in-memory, global graph abstrac-
tion that describes interactions between every pair of nodes. Multiple types of
interaction graphs are supported, covering a range of interactions from event
level to network and system levels. These are shown in Table 7 and are specified

2 A node is a physical or a VM running the VScope runtime in example application.
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with the argument graph. The creation and continuous update of the global graph
is implemented using an interaction tracking DPG explained in Section 2.5.

Query. The Query function collects and analyzes metrics from a specified list of

Table 3. Arguments of Query(*Optional)

Argument Description

nodeList∗ a list of nodes to query
metricList∗ a list of metric types
queryFunc analytics function or code

mode∗ continuous or one-shot

nodes, and provides results to query
initiators. Query has two modes –
continuous mode and one-shot – the
latter being helpful when running
monitoring or analysis actions that
have high overheads. Query (including
query with ’continuous’ mode) is de-
signed with the ‘pull’ model, i.e., the VMaster requests (pulls) metrics/results
from VNodes. Conversely, watch is designed with the ‘push’ model, i.e., VNodes
periodically report basic metrics or anomaly detection results to the VMaster.

2.4 Flexible DPGs

DPG as the Building Block. All VScope operations described in Section 2.3
are implemented via DPGs. A DPG consists of a set of processing points (VNodes)
to collect and analyze monitoring data. It can be configured in multiple topolo-
gies to meet varying scale and analysis requirements. For example, it can be
configured as a hierarchical tree or as a peer-to-peer overlay or, when operat-
ing at smaller scales, as a centralized structure. Managed by a DPGManager, a
DPG can be dynamically started on a specified set of nodes, where each VNode
runs locally on a designated node and executes functions specified in VScope
operations. These functions are stored as binaries in the function library, and
they can be dynamically linked. As a result, DPGs are flexible in terms of topol-
ogy, functions executed, and metric types. Further, DPG outputs can be (i)
presented immediately to the VScope user in VShell, (ii) written into rotating
logs, or (iii) stored as off-line records in a database or key-value store. The last
two configurations are particularly important when historical data is needed for
troubleshooting. The use case in Section 4.2 uses rotating logs to store past
metric measurements.

DPG API and Management Commands. Figure 4 describes the DPG core
API Point-to-point (P) Centralized (C) Hierarchy (H)

start

add

delete

sender receiver master

slaves

root
parents

leaves

create

stop

insert

assign

Fig. 4. DPG API and Topologies

API and sample topologies, with de-
tails shown in Table 4. The create()
method automatically creates any size
topology of type point-to-point (P),
centralized (C), or hierarchy (H) for
some specified list of nodes. Topology
specifics are configurable, e.g., besides
the number of nodes, one can specify
the branching factor of a hierarchical topology. Create() returns a unique DPG
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Table 4. Pseudo Functions for DPG API

DPG create (list, topology, spec) Create a DPG with a specified topology
int add (src, dst, DPG) Add a link from VNode src to VNode dst
int assign (func, spec, list, DPG) Assign function to a list of VNodes
int start (DPG) Start a DPG
int stop (DPG) Stop an operating DPG
int insert (new, src, dst, DPG) Insert a new VNode between existing VNodes
int delete (src, dst, DPG) Delete a link from VNode src to VNode dst

ID for reference in subsequent operations, and in the assign() method, the pa-
rameter func is a registered function ID. When a DPG is running, one can call
the assign() to change the functionality on any VNode or use the insert() and
delete() methods to change the DPG. The DPG API is exposed as commands in
VShell, as well, and there are additional auxiliary management commands like
list (listing metric types, functions, or DPGs) and collect (returns the metric
collection function).

Though operators can just use VScope operations without knowing the un-
derlying DPG logic, new topologies, new operations and customization of exist-
ing functionality can be added easily through direct use of DPG APIs, which is
not described in detail here because of space constraints.

2.5 Implementation

VScope Runtime. The VScope runtime is implemented with EVPath [1], a
C library for building active overlay networks. Metric collection uses standard
C libraries, system calls, and JMX (at application level). Metrics are encoded
in an efficient binary data format [1], and a standard format template is used
to define new metric types. Built-in metrics and functions are listed in Table 5
and Table 6. As shown in the tables, VScope has a comprehensive set of metrics
across application, system and platform levels, and a variety of representative
analytics functions that are implemented with standard C libraries and other
open source codes [13]. The DPGs associated with these functions have different
topologies. For instance, Pathmap, PCA (Principle Component Analysis) and
K-Clustering are implemented as centralized DPGs, as they require global data.

Table 5. Basic Metrics

Level Basic Metrics

Appli- E2E Latency, JMX/JVM Metrics
cation Flume/HBase/HDFS INFO Logs

Virtual VCPU, Memory, I/O Metrics
Machine Network Traffic, Connections

Dom0 & CPU, I/O and Memory Metrics
System Paging, Context Switch Metrics

Table 6. Built-in Functions

DPG Algorithms

Watch Hierarchy
MAX/MIN/AVE,
Entropy, Top-K

Scope Centralized Pathmap[3]

Query Centralized
K-Clustering,

PCA

End-to-End Anomaly Detection. The Watch operation is implemented us-
ing a DPG with a hierarchical topology in which the leaves are all of the nodes
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Algorithm 1: Parallel Graph Aggregation

1. On each leaf node, generate an adjacency list (where each record is
[vertex ID, connected vertices]) sorted by vertex IDs, and send it to parent

2. On each parent or root node, merge n sorted
adjacency lists as follows:

i. Create an array P with size of n storing current vertex ID in each adjacency list.
ii. If multiple IDs in P are the same and they are the smallest, merge their records

into a new record, else take the record with the smallest vertex ID in P as the
new record. (essentially an n-way sorting of n vertex ID arrays)

iii. Place the new record into the merged adjacency list.
iv. Update P to reflect the next record in each adjacency list.
v. Repeat ii to iv until all the records in n adjacency lists are visited.

of the web log analysis application. This DPG collects the end-to-end latency
on each Flume agent, which is defined as the duration between the time when
a new log entry is added and the time it (or its associated result) appears in
HBase. This is measured by creating a test log entry on each agent, querying
the entry in HBase, and computing the difference. The latencies are then aggre-
gated through the tree using Entropy-based Anomaly Testing (EbAT) [37, 35], a
lightweight anomaly detection algorithm, to output the agents that are outliers.
Other algorithms for anomaly detection and ranking are investigated in [38, 34].

Interaction Tracking. Table 7 shows the built-in global graphs supported by

Table 7. VScope Interaction Graphs

Interaction DPG

Causality Event Flow Centralized
Graph between Nodes Using Pathmap

Connection Network Distributed
Graph Connection Using Netstat
Virtual Dom0-DomU Distributed
Graph Mapping Using Libvirt
Tier Dependency Distributed

Graph between Tiers Static Config.

Scope, covering a range of in-
teractions from event level to
network and system levels. For
each graph type, in our imple-
mentation, a DPG is deployed
and continuously run on all the
nodes to construct and update
the corresponding graph struc-
ture in VMaster. There are two
ways to track the global interac-
tions, centralized or distributed.
For interactions like the causality graph implemented using Pathmap [3], a DPG
collects metrics from leaves, compresses them at intermediate nodes, and then
constructs the graph at the DPG root. An alternate distributed implementation
of graph construction uses parallel analysis in which the leaves analyze metrics
to generate a local graph (e.g., in the connection graph, it is the ingress and
egress connections on a node), the local graphs are aggregated at parent nodes
to create partial graphs which are finally aggregated at the root to produce the
global graph. The current prototype uses adjacency lists to represent graphs and
employs the parallel algorithm shown in Algorithm 1 to merge adjacency lists.
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3 Experimental Evaluation

Experiments are conducted on a testbed running 1200 Xen VMs hosted by 60
physical server blades using Ubuntu Linux (20 VMs per server). Every server
has a 1TB SATA disk, 48GB Memory, and 16 CPUs (2.40GHz). Each VM has
2GB memory and at least 10G disk space.

3.1 VScope Base Overheads

We install VScope on every VM in a host and vary the number of VNodes on
Table 8. VScope Runtime Overheads

DPG# VNode# CPU Usage Memory Usage
in Host in VM Increase Increase

20 1 < 0.01% 0.02%
100 5 < 0.01% 0.02%
1000 50 < 0.01% 0.03%

each VM. Each VNode collects
the metrics shown in Table 5,
and sends them to a separate
DPG. As shown in Table 8,
CPU and Memory overheads
to the VM are negligible even
when there are 50 VNodes (1000
concurrent DPGs in the host). With continuous anomaly detection and via inter-
action tracking, VScope imposes only 0.4% overhead on the end-to-end latency
of application described in Section 4. In contrast and as shown in Section 4,
heavyweight VScope operations, like those performing tracing or logging may
incur considerable overheads, due to the innately high costs of those data collec-
tion methods. These facts demonstrate the utility of continuously using the ‘thin’
VScope layer, which does not add notable costs, and then, only using heavier
weight data collection and analysis methods when needed. Further, by having
the ’thin’ layer point out ’where’ and ’when’ such heavier weight methods are to
be used, the inevitably high overheads of using those methods can be reduced.

3.2 DPG Deployment

Fast deployment of DPGs is critical for timely troubleshooting. We evaluate this
by measuring the latency for deploying a hierarchical DPG on more than 1000
VMs, each of which has one VNode. The topology has a height of 2, and the
total number of leaf VMs varies from 125 to 1000.

As expected, Figure 5(a) shows increased deployment times (presented as la-
tency on the Y-Axis) with increased DPG sizes. However, latency remains within
5 seconds even at the scale of 1000 VMs. This would be considered sufficient for
current troubleshooting delay requirements stated in [8] (typically 1 hour), but
it also suggests the utility of future work on DPG reuse – to use and reconfigure
an existing DPG, when possible, rather than creating a new one, or to pre-deploy
DPGs where they might be needed. Deploying moderate scale DPGs with hun-
dreds of nodes, however, usually happens within 1 second, suggesting that such
optimizations are not needed at smaller scale. Also note that deployment latency
varies with different branching factors (bf). At scales less than 750, deploying
the DPG with bf 125 has larger latency than those with smaller bf values; this
is because parent nodes construct their subtrees in parallel and the parents in
the DPG with bf 125 have the biggest subtrees.
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Fig. 5. Efficient DPG Deployment and Guidance Mechanism

3.3 Interaction Tracking

The Scope operation relies on efficient methods for interaction tracking. We
evaluate a distributed DPG (used for connection graph) by creating a two-level,
hierarchical DPG with bf 25. We vary its number of leaves from 125 to 1000,
and for this test, each VM has a randomly generated local interaction graph
represented by an adjacency list with 1000 vertex entries with each vertex con-
nected to 1000 randomly generated vertices. We measure the total latency from
the time the first local graph is generated by leaf VMs to the time when the
respective merged graph is created at the root. We also measure the average
time of local processing incurred during the per-node aggregation of connection
graph information in order to study the dominant factor in total latency.

As shown in Figure 5(b), the total latency for generating a global graph in-
creases as the system scales, but it remains within 4 seconds for 1000 VMs, where
each VM has a 1000×1000 local connection graph. This means that the system
can generate such a global graph at a resolution of every 4 seconds. Total latency
is mainly due to the queuing and dequeuing time on VNodes plus network com-
munication time. This is shown by the small measured local aggregation latency
in Figure 5(c). At the same time, since these latencies increase linearly with the
total number of inputs, parallel aggregation is a useful attribute to maintain for
large scale systems. We also note that the local graphs occupy a fair amount of
memory, which suggests opportunities for additional optimizations through use
of more efficient internal data structures. Finally, the analytics actions taken by
Scope utilize the Pathmap for centralized interaction tracking. In Section 3.4,
Figure 6 shows that it can generate a 1000 VM graph within 8 seconds.

In summary, the Scope operation’s current implementation is efficient for the
long running enterprise codes targeted in our work, but it may not meet the
requirements of real-time codes such as those performing on-line sensing and
actuation in highly interactive settings like immersive games.

3.4 Supporting Diverse Analytics

We use the algorithms in Table 6 as micro-benchmarks to measure the base
performance of VScope operations. Tests randomly generate a 1000×1000 matrix
of float numbers on each VM, and vary the size of the hierarchical DPG (bf=25)
from 125 to 1000 leaf VMs. We measure the latency for analyzing the data on
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Fig. 6. Analytics Microbenchmark Performance

all leaf VMs at each scale. For centralized algorithms, the parent VNodes only
relay the data. For the Top-K algorithm, we calculate the top 10 numbers. We
conduct K-Means clustering with 5 passes.

Figure 6 shows latency breakdowns as well as the total latency of each func-
tion. In general, most of the algorithms operate within seconds, with increasing
latencies for rising scales. Algorithms with high computational complexity are
more costly, of course, but for such ‘heavyweight’ algorithms, especially for PCA,
although the total latencies are over 1.5 minutes at the scale of 1000 VMs, the
base VScope implementation contributes only about 4.5% to these delays, and
this contribution decreases as the system scales.

4 Experiences with Using VScope

This section illustrates the utility of VScope for troubleshooting, using the appli-
cation described in Figure 1 (VScope’s DPG architecture was also investigated
in other use cases in [36, 19].) The application’s Flume tier has 10 collectors,
each of which is linked with 20 agents. The HBase tier has 20 region servers, and
the HDFS tier has 40 datanodes3. Experiments use web request traces from the
World Cup website [18] to build a log generator that replays the Apache access
logs on each of 200 agent VMs. Each agent reads the new entries of the log and
sends them to its collector. The collector combines the ClientID and ObjectID as
the keyword and the log content as the value, then places the record into HBase.
The log generator generates 200 entries per second. The worst case end-to-end
latency in the problem-free scenario is within 300 milliseconds.

The VScope runtime is installed on all of the VMs and in addition, on all
physical machines (i.e., Xen’s Dom0s). In accordance with standard practice
for management infrastructures [21, 36], one additional dedicated VM serves as
VMaster, and 5 dedicated VMs serve as parent VNodes in the two-level hierarchy
DPGs used for troubleshooting. Two use cases presented below validate VScope’s
utility for efficient troubleshooting.

3 Each tier has one master node, and in HBase, 5 region servers serve as the ZooKeeper
quorum. For simplicity, we do not ‘count’ masters when discussing scale.
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4.1 Finding Culprit Region Servers

The first VScope use case crosses multiple tiers of the Flume application. The
objective is to find some ‘culprit’ region server exhibiting prolonged execution
times. Those are difficult to detect with standard HBase instrumentation be-
cause debug-level logging in region servers to trace their request processing
times [6] generates voluminous logs and high levels of perturbation to the run-
ning server(s). Hence troubleshooting using brute force methods might quickly
find a culprit by turning on all of the region servers’ debug-level logging and then
analyzing these logs (in some central place), but this would severely perturb the
running application. Alternative methods that successively sample some random
set of servers until a culprit is found would reduce perturbation but would likely
experience large delays in finding the culprit server. More generally, for multi-tier
web applications, while bottleneck problems like the ‘culprit’ region server de-
scribed above commonly occur, they are also hard to detect, for several reasons.
(1) Dynamic connectivity – the connections between the Flume and HBase tiers
can change, since the region server to which a collector connects is determined by
the keyword region of the collector’s current log entry. (2) Data-Driven concur-
rency – HBase splits the regions on overloaded region servers, causing additional
dynamic behavior. (3) Redundancy – a region server is typically connected by
multiple collectors. As a result, one ‘culprit’ region server exhibiting prolonged
processing times may affect the end-to-end latencies observed on many agents.

We synthetically induce server slowdown, by starting garbage collection (GC)
in the Java Virtual Machine (JVM) on one of the region servers. This pro-
longed disturbance eventually slows down the Flume agents connected to the
region server via their collectors. Experimental evaluations compare VScope,
the brute-force, and the sampling-based approaches for finding the culprit re-
gion server. The VScope approach follows the 3 steps illustrated in Figure 7.
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Fig. 7. Steps using VScope operations

(1) A user at a VShell console
issues a Watch operation to find
which agents have prolonged end-
to-end latencies.
(2) Use the connection graph (cho-
sen from Table 7) and the Scope op-
eration to find the connected collec-
tors and the region servers to which
they connect. In these guidance ac-
tions, the connection graph is the
graph parameter, the problematic
agent node is the source, and ’2’ is used as the distance parameter. The output
will be the collector and associated region servers. By iteratively ‘Scoping’ all
anomalous agents, we find that they share 5 collectors. Furthermore, the Scope
operation returns the set of region servers in use by these collectors, and we
can determine that they have 4 region servers in common. Therefore, we select
those four as candidate culprits. Under the assumption of only one culprit region
server, this operation will succeed because the culprit affects all of these collec-
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tors. While it will be rare to have multiple culprit region servers in a short period
of time, in that case, more candidates may be chosen, but they still constitute
only a small set of all region servers.
(3) Here, VScope has narrowed down the search for the problematic region server,
and we can now use the Query operation to turn on debug-level logging for the
candidates. We note that the region servers yielded by the Scope operation will
always include the culprit, because VScope tracks all connections. The user will
still have to carefully examine the region server logs to find the problem, but
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instead of having 20 candidates (the
brute-force approach), there are just 4. If
the examination is done sequentially (by
gathering and examining logs one server
at a time) to minimize perturbation, the
user can expect to examine 2 logs on the
average (requiring 20 minutes of logging
and .45GB of data) with VScope, as op-
posed to 10 logs (requiring 100 minutes of
logging and 2GB of data) with the brute-
force approach. If log gathering is per-
formed in parallel to save time, the in-
formation provided by VScope allows the
retrieval of just 4 logs (0.9GB) vs. 20 logs (4.1GB) by the brute-force approach.
Note that, as shown in Figure 8, simultaneously logging on multiple region
servers has a non-linear effect upon system performance. Simultaneous logging
on only 4 servers (with VScope) slows the overall system down by 99.3%, but
logging on all servers (brute-force) slows it by 538.9%. Compromise approaches
like random sampling might log on more than one, but fewer than the total num-
ber of candidate region servers, hoping to trade off perturbation with ‘time-to-
problem-discovery’. However, the inherent randomness makes their performance
nondeterministic. In contrast, VScope rationally narrows the set of possible bad
region servers, thus improving the expected perturbation, log data sizes, and
time to resolution in both average and worst cases.

These results validate the importance of VScope’s ‘guided’ operation that
explicitly identifies the nodes on which troubleshooting should focus, in contrast
to methods that use sampling without application knowledge or that employ
non-scalable exhaustive solutions. They also demonstrate VScope’s ability to
assist with cross-tier troubleshooting. We note that, for sake of simplicity, this
use case assumes the root cause to be within the region servers. This assumption
can be removed, of course, and in that case, operators can apply further analysis
as shown in Figure 7 by iteratively using VScope operations.

4.2 Finding a ‘Naughty’ VM

Previous research has shown the potential for running real-time application in
virtualized settings [22]. However, VMs’ resource contention on I/O devices can
degrade the end-to-end performance of the application. A typical scenario is
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that some ‘naughty’ VM excessively uses a physical NIC shared by other VMs
on the same physical host, thereby affecting the performance of the real-time
VMs. Potential ‘naughty’ VMs could be those that run MapReduce reducers and
exchange voluminous data with a number of other nodes (e.g. mappers), or those
running HDFS datanodes and replicating large files. Contention could also stem
from management operations like VM migration and patch maintenance [32].

There are remedies for contention issues like those above. They include mi-
grating the ‘naughty’ VMs and/or changing network scheduling. VM migration
can involve long delays, and changes to VMs’ network scheduling may involve
kernel reboots that are unsuitable for responsive management. The solution with
which we experiment performs traffic shaping for the ‘naughty’ VM on-the-fly, in
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Fig. 9. Using VScope to Find a ‘Naughty’ VM

the hypervisor, without involv-
ing guest VMs. To do so, how-
ever, support is needed to first
locate the troublesome VM.
VScope running in the Dom0s
of our virtualized infrastructure
provides such support. Specif-
ically, VScope deploys VNodes
in each host’s Dom0, using the
virtualization graph in Table 7
to track mappings between VMs
and hypervisors.

We emulate the ‘naughty’
VM issue by deploying a VM
with a Hadoop datanode and
tasktracker, on the host where a
‘good’ VM is running one of the
200 Flume agents. This scenario
is chosen to emulate co-running
a real-time web log analysis
application with a batch sys-
tem using Hadoop for long term
analysis on the data generated by the real-time application. In this case, a prob-
lem is created by starting a HDFS benchmarking job called ‘TestDFSIO write’,
which generates 120 2GB files with 4 replicas for each file in HDFS. This ‘naughty
VM’ generates 3 files (we have 40 slaves in the Hadoop configuration. Every slave
carries out 3 map tasks, each of which writes a 2G file to HDFS, and replicates
them via the network. VScope is used to find that naughty VM, so that its
communications can be regularized via Dom0 traffic shaping.

The monitoring traces in Figure 9 demonstrate VScope’s troubleshooting
process. Trace 1 presents the latency data generated by the Watch operation.
Latency rises after the anomaly is injected. Using 1 second as the threshold
for an end-to-end performance violation, after 20 violations are observed within
5 minutes, the Watch operation reports an anomaly and its location, i.e., the
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‘good’ VM. After the anomaly is reported, troubleshooting starts for the VM by
querying basic VM level metrics, including the number of packages per second
represented by Trace 24, where we find that metrics in the VM do not show ab-
normal behavior. In response, we use the Scope operation to find which physical
machine is hosting the VM and then Query its aggregate packet rate. With these
guided actions, Trace 3 shows that the shared NIC is exchanging a large number
of packets, in contradiction to the low packet rate in the ‘good’ VM. The next
step is to further Scope the virtualization graph to find the other VMs running
on the same physical host and then Query the network metrics of their VIFs5.
The ‘naughty’ VM is easily found, because its respective VIF consumes the ma-
jority of the packets for the physical NIC, as shown in Figure 9:Trace 4. The
correctness of the diagnosis obtained via VScope is demonstrated by applying
traffic shaping in Dom0, which involves using TC to throttle the bandwidth of
the ‘naughty’ VM. It is apparent that this action causes the end-to-end latency
of the good VM to return to normal (see Trace 1). In Trace 3, the hypervisor
packet rate goes down, and in Trace 4 the network consumption of the ‘naughty’
VM also sinks, as expected, but it still has its share of network bandwidth.

5 Related Work

Aggregation systems like SDIMS[39] and Moara[20] are most related to VScope
in terms of flexibility. SDIMS provides a flexible API to control the propaga-
tion of reads and writes to accommodate different applications and their data
attributes. Moara queries sub-groups of machines rather than the entire sys-
tem. In both systems, flexibility is based on dynamic aggregation trees using
DHTs (Distributed Hash Tables). VScope’s approach differs in several ways.
First, VScope can control which nodes and what metrics to analyze; neither
SDIMs nor Moara provides this level of granularity. SDIMS only controls the
level of propagation along the tree, and Moara chooses groups based on at-
tributes in the query (e.g., CPU utilization). Second, the analysis functions in
SDIMS and Moara are limited to aggregation functions, while arbitrary func-
tions can be used with VScope, including those performing ‘in transit’ analysis.
Third, like other monitoring or aggregation systems, including Ganglia[26], As-
trolabe[33], and Nagios[27], SDIMS and Moara focus on monitoring the summary
of system state, while VScope’s can also be used for in-depth troubleshooting,
including debugging and tracing, supported by basic metric aggregation like that
performed in the Watch operation.

GWP[30], Dapper[31], Fay[14], Chopstix[7] are distributed tracing systems
for large scale data centers. VScope is similar in that it can monitor and an-
alyze in-depth system or application behaviors, but it differs as follows. First,
instead of using statistical (Fay and Chopstix leverage sketch, a probabilistic
data structure for metric collection) or random/aggressive sampling (as used in

4 We only show NIC-related metrics for succinctness.
5 A VIF is the logical network interface in Dom0 accepting the packets for one VM

and in our configuration, each VM has a unique VIF.
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GWP and Dapper), VScope can look at any set of nodes, making it possible to
implement a wide range of tracing strategies (including sampling) through its
guidance mechanism. Second, those tracing systems use off-line analysis, while
VScope can analyze data on-line and in memory, to meet the latency restriction
for troubleshooting real-time applications.

HiTune[12] and G2[17] share similarity with VScope in that they are general
systems for troubleshooting ‘big-data’ applications. HiTune extracts the data-
flows of applications, using Chukwa for data collection and Hadoop for dataflow
analysis. G2 is a graph processing system that uses code instrumentation to ex-
tract runtime information as a graph and a distributed batch processing engine
for processing the queries on the graph. VScope differs in its focus on on-line
troubleshooting, whereas HiTune and G2 are mainly for off-line problem diagno-
sis and profiling. Further, HiTune and G2 are concerned with analyzing within
a single application tier, while VScope troubleshoots across multiple applica-
tion tiers. Other troubleshooting algorithms and systems, such as Pinpoint[10],
Project5[4], and E2EProf[3], target traditional web applications while VScope
focuses on real-time data-intensive applications.

6 Conclusions

VScope is a flexible, agile monitoring and analysis system for troubleshooting
real-time multi-tier applications. Its dynamically created DPG processing over-
lays combine the capture of monitoring metrics with their on-line processing, (i)
for responsive, low overhead problem detection and tracking, and (ii) to guide
heavier weight diagnosis entailing detailed querying of potential problem sources.
With ‘guidance’ reducing the costs of diagnosis, VScope can operate efficiently
at the scales of typical data center applications and at the speeds commensurate
with those applications’ timescales of problem development. The paper provides
evidence of this fact with a real-time, multi-tier web log analysis application.

Our ongoing work is further developing VScope’s notion of guided operation,
one idea being to automatically generate certain sequences of guidance actions
from the previous manual actions taken by operators. We will also investigate
other guidance options. To extend scalability to the 10,000+ machines of to-
day’s large scale data center applications run by web companies like Google or
Amazon, it may also be useful to pre-position DPGs into potentially critical sub-
systems and/or reconfigure existing DPGs, instead of deploying new ones when
investigating problems via detailed queries.

References

1. The evpath library. http://www.cc.gatech.edu/systems/projects/EVPath.
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