
Using Vector Interfaces to Deliver Millions of IOPS from a
Networked Key-value Storage Server

Vijay Vasudevan
Carnegie Mellon University

vrv@cs.cmu.edu

Michael Kaminsky
Intel Labs

michael.e.kaminsky@intel.com

David G. Andersen
Carnegie Mellon University

dga@cs.cmu.edu

ABSTRACT
The performance of non-volatile memories (NVM) has grown by a factor of 100 during the last several years: Flash
devices today are capable of over 1 million I/Os per second. Unfortunately, this incredible growth has put strain on
software storage systems looking to extract their full potential.

To address this increasing software-I/O gap, we propose using vector interfaces in high-performance networked
systems. Vector interfaces organize requests and computation in a distributed system into collections of similar but
independent units of work, thereby providing opportunities to amortize and eliminate the redundant work common in
many high-performance systems. By integrating vector interfaces into storage and RPC components, we demonstrate
that a single key-value storage server can provide 1.6 million requests per second with a median latency below one
millisecond, over fourteen times greater than the same software absent the use of vector interfaces. We show that
pervasively applying vector interfaces is necessary to achieve this potential and describe how to compose these
interfaces together to ensure that vectors of work are propagated throughout a distributed system.

Categories and Subject Descriptors: D.4.7 [Operating Systems]: Organization and Design–Distributed Systems;
D.4.8 [Operating Systems]: Performance–Measurements

General Terms: Design, Measurement, Performance
Keywords: Performance, Measurement, Non-volatile Memory, Key-value Storage

1. INTRODUCTION
Fast non-volatile memories (NVMs) are changing the landscape of data-intensive computing. Flash technology today
can deliver 6GB/s sequential throughput and just over 1 million I/Os per second from a single device [11]. But the
emergence of these fast NVMs has created a painful gap between the performance the devices can deliver and the
performance that application developers can extract from them.

As we show in this paper, an implementation of a networked key-value storage server designed for the prior
generation of Flash storage only sustains 112,000 key-value queries per second (QPS) on a server with a storage
device capable of 1.8 million QPS. This large performance gap exists for a number of reasons, including Ethernet and
storage interrupt overhead, system call overhead, poor cache behavior, and so on. Unfortunately, the bottlenecks that

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.
SOCC’12, October 14-17, 2012, San Jose, CA USA.
Copyright 2012 ACM 978-1-4503-1761-0/12/10 ...$15.00

create this gap span application code, middleware, the kernel, and the storage device interface. Solutions that do not
address all of these bottlenecks will not substantially narrow this performance gap.

To address such stack-spanning bottlenecks, this paper advocates for pervasive use of “vector interfaces” in
networked systems. At a high level, vector interfaces express work in classes of independent units whose computation
can be shared or amortized across the vector of work. Vector interfaces to storage submit multiple reads or writes
(but not both) in one large batch; vector interfaces to RPC coalesce a class of RPCs (e.g., get()) into one large RPC
to reduce per-message overhead and send fewer packets over the network. We use the term vector to differentiate
from the more general batching: The same operation is applied to all entries in a vector, whereas batching does not
necessarily place the same constraint. Vector interfaces are therefore similar in spirit to SIMD instructions, where a
processor executes the same set of instructions over independent data.

We focus our attention on one compelling use case, distributed key-value storage backed by fast NVM (e.g.,
solid state drives), to illustrate how applications can best use vector interfaces. We demonstrate that using vector
interfaces throughout the entire stack improves throughput by an order-of-magnitude for our networked key-value
storage system, allowing a single server to handle 1.6 million queries per second at a median latency below one
millisecond, providing roughly 90% of the operation throughput of the underlying NVM device. We show that failure
to use vector interfaces at both the RPC and storage layer limits throughput to approximately 20% of device capability.
We also describe the latency versus throughput tradeoffs introduced by vector interfaces and provide guidance to
system designers as to when vector interfaces are useful and when they are not effective.

2. THE SHRINKING CPU-I/O GAP
Fast non-volatile memories provide several benefits over traditional magnetic storage and DRAM systems. In contrast
to magnetic disks, they provide several orders of magnitude lower access latency and higher small random I/O
performance. They are therefore well suited to key-value storage workloads, which typically exhibit small random
access patterns across a relatively small dataset. In response, researchers have developed several key-value storage
systems specifically for flash [5, 4, 7, 8].

Solid state drive (SSD) performance has increased dramatically over the last few years. SATA-based Flash
SSDs have been capable of up to 100,000 small (512-byte) random reads per second since 2009 [31], and enterprise-
level PCIe-based SSDs claim 1.2 million random I/Os per second [11]. Prototype PCIe NVM platforms achieve
similar throughput with latencies of 40 microseconds for phase-change memory [3] and 10 microseconds for NVM
emulators [6]. Meanwhile, CPU core sequential speeds have plateaued in recent years, with aggregate system
performance achieved through using multiple cores in parallel. Figure 1 depicts this shrinking I/O gap using historical
data over the past 25 years.1 While aggregate CPU performance might continue to improve due to increases in core
count, I/O latency and efficiency would remain stagnant if bottlenecked by single-core performance.

Given this dramatic improvement in throughput and latency, what changes are needed to allow key-value storage
systems to take advantage of these improvements?

We answer this question in this section by measuring the performance of an open-source distributed key-value
storage system developed for flash storage called FAWN-KV [5, 1] running on a prototype NVM emulator described
in more detail in the next section. The PCIe-based NVM prototype is capable of 1.8 million IOPS, reflecting a modest
but not implausible advance over the 1.2 million IOPS available off-the-shelf today from companies such as FusionIO;
thus, our prototype represents a reasonable performance target for future NVM software storage systems. FAWN-KV
was designed for a hardware architecture combining flash devices from a prior generation of CompactFlash or
SATA-based SSDs with low-power processors such as the Intel Atom. The software has therefore already been
optimized to minimize memory consumption and CPU overhead to take advantage of SSDs capable of 80,000+
IOPS [31].

1CPU numbers collected from http://cpudb.stanford.edu, showing the fastest clock rate for an Intel processor released every year.
Hard drive seek time numbers come from an IBM GPFS Whitepaper [10]. Flash IOPS are derived from public specification sheets.

http://cpudb.stanford.edu

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 1985 1990 1995 2000 2005 2010 2015
 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

S
e
q
u
e
n
ti
a
l
C

P
U

 S
p
e
e
d
 (

M
H

z
)

S
to

ra
g
e
 S

p
e
e
d
 (

K
 I
O

P
S

)

Year

The Shrinking CPU-I/O Gap

CPU Sequential Speed
HD Random IOPS (in Thousands)

Flash Random IOPS (in Thousands)

Figure 1: The Shrinking I/O Gap: CPU frequency vs storage I/O operations per second.

2.1 NVM platform and baseline
We evaluate three different system configurations to understand where the performance is limited (Figure 2). In the
networked system evaluation, client machines send requests at high rate to a “backend” storage node. The backend
node translates these requests into reads to the PCIe NVM emulator, waits for the results, and sends replies back to
the clients. The backend datastore evaluation measures only the backend storage node and local datastore software.
Finally, the storage-only evaluation omits the datastore software and sends storage queries from a stripped-down
benchmark application designed to elicit the highest possible performance from the NVM platform.

The backend storage node is a typical fast server machine with two 4-core Intel Xeon X5570 CPUs operating at
2.933 GHz with hyperthreading disabled. It uses an Intel X58 chipset, contains 12GB of DRAM, and is attached to
the network using an Intel 82575EB 1Gbps on-board network interface.

The NVM prototype is a PCIe-based device that plugs into the backend; it offers both a traditional system call
interface as well as a userspace software interface that provides read()- and write()-like calls. The availability
of a userspace interface allows us to efficiently and easily implement vector storage interfaces that are currently
unavailable in off-the-shelf PCIe SSDs. The userspace interfaces translate reads and writes into memory copies and
commands issued directly to the device over PCIe. The device uses four independent DMA engines for read and write
commands, requiring that at least 4 different threads simultaneously access the device for full performance.

The NVM device is backed by DRAM but looks like a PCIe SSD to the backend’s OS, allowing us to focus on
the higher levels of the software stack to understand how applications and networked system software must adapt
to support the throughput capability of a future class of fast storage devices. We do not use the device to model
a specific device technology with particular latencies, wear-out, or access peculiarities (such as erase blocks); we
instead use FAWN-KV’s storage layer, FAWN-DS, which has already been optimized to write sequentially using a
log-structured layout. We believe that the performance-related aspects of our work will generalize to future NVMs
such as phase-change memory (PCM), but device-specific optimizations beyond the scope of this work will likely be
necessary to make the best use of an individual technology.

The NVM device provides 1.8 million I/O operations per second (IOPS) when accessed directly via a simple
test program (leftmost bar in Figure 3). Microbenchmarks using FAWN-DS, our log-structured, local key-value

PCIe

Backend Server

NVM
Emulator

EthernetClient

Client

Client

Client

FAWN-KV Networked System

Backend Datastore

FAWN-DS
Userspace I/O

Storage-only

Figure 2: Benchmark scenarios for NVM platform.

 0

 500

 1000

 1500

 2000

IO
P

S
 i
n
 t
h
o
u
s
a
n
d
s

NVM Platform

FawnKV

Vector

Figure 3: Networked key-value systems without vector interfaces may significantly underutilize future NVMs.
Using vector interfaces can improve throughput to 90% of device capability.

datastore application, achieve similar performance. We measure the throughput of looking up random key-value pairs
with 512B values. Each lookup requires a hash computation, a memory index lookup, and a single read from the
underlying storage device. These results show that a local key-value datastore can saturate the NVM device, despite
requiring hashing and index lookups. A single key-value pair retrieval takes 10 microseconds, on par with the fastest
NVM emulator platforms available today [6].

2.2 FAWN-KV networked system benchmark
The FAWN-KV benchmark is an end-to-end benchmark. The server communicates with 25 open-loop, rate-limited
client load generators (enough to ensure that the clients are not the bottleneck). The middle bar in Figure 3 shows that
the networked system is an order of magnitude slower than the purely local datastore, achieving only 112,000 IOPS.
Even a highly optimized networked key-value storage system designed for current SSDs cannot take advantage of the
performance capabilities of next generation SSD systems.

Understanding this large performance gap requires breaking down the components of FAWN-KV. FAWN-
KV builds three layers on top of FAWN-DS: 1) networking, 2) RPC, and 3) the associated queues and threads to
make parallel use of flash using a staged execution model similar to SEDA [34]. These additional components are
responsible for the significantly reduced throughput since FAWN-DS alone can saturate the device capability; we

further tested FAWN-KV using a “null” storage backend that returned a dummy value immediately, which only
modestly improved throughput.

FAWN-KV uses Apache Thrift [2] for cross-language serialization and RPC. Each key-value request from the
client requires protocol serialization and packet transmission; the backend receives the request and incurs a network
interrupt, kernel IP and TCP processing, and protocol deserialization before it reaches the application layer; these steps
must be repeated for each response as well. These per-request computations are one source of additional overhead.

To amortize the cost of these per-request computations, the rest of this paper describes the implementation,
evaluation and tradeoffs of using vector interfaces to storage and RPC systems. As we build up to in this paper,
pervasively using vector interfaces improves networked key-value storage throughput from 112,000 IOPS to 1.6M
IOPS, shown as the rightmost bar in Figure 3, a factor of 14 improvement in performance that achieves roughly 90%
of the capability of the NVM platform.

3. VECTOR INTERFACES
Given that a state-of-the-art cluster key-value store cannot provide millions of key-value lookups per second (despite
underlying storage hardware that can), there are three mostly-orthogonal paths to improving its throughput: Improving
sequential code speed; embracing parallelism by doling out requests to the increasing number of cores available in
modern CPUs; and identifying and eliminating redundant work that can be shared across requests.

In this work, we focus on only the last approach. Sequential core speeds show no signs of leaping forward as they
once did, and sequential code optimization is ultimately limited by Amdahl’s law [6]—and, from our own experience,
optimizing code that spans the entire height of the kernel I/O stack is a painful task. Although improving parallelism
is a ripe area of study today, we avoid this path as well for two reasons: First, we are interested in improving
system efficiency as well as raw throughput; one of the most important metrics we examine is IOPS per core, which
parallelism alone does not address. Second, and more importantly, the vector-based interfaces we propose can degrade
into parallel execution, whereas a parallel approach may not necessarily yield an efficient vector execution.

Vector interfaces group together multiple requests with independent data, but the same operation (e.g., “read these
10 disk locations”), whose execution can be shared across the vector of work. Doing so allows a system to eliminate
redundant work found across similar requests and amortize the per-request overheads found throughout the stack. By
eliminating redundant work and amortizing costs of request execution, we can significantly improve throughput as
measured by IOPS as well as efficiency as measured by IOPS/core.

Vector interfaces also provide an easy way to trade latency for improved throughput and efficiency by varying
the width of the vector. Moving to storage devices that support higher throughput can be as simple as increasing the
vector width at the cost of higher latency.

We focus on two types of explicit vector interfaces in this work: 1) Vector RPC interfaces, aggregating multiple
individual, similar RPCs into one request, and 2) Vector storage interfaces, or vector-batched issuing of I/O to
storage devices.

3.1 Vector RPC interfaces
Vector RPC interfaces batch individual RPCs of the same type into one large RPC request. For example, memcached
provides programmers a multiget interface and a multiget network RPC. A single application client can use the
multiget interface to issue several requests in parallel to the memcached cluster, improving performance and reducing
overall latency. The multiget RPC packs multiple key-value get requests into one RPC; reducing the number of RPCs
between an application client and a single memcached server means fewer network interrupts and system calls, and
reduced RPC processing overhead.

3.2 Vector storage interfaces
Vector storage interfaces specify vectors of file descriptors, buffers, lengths, and offsets to traditional interfaces such as
read() or write(). They differ from the current “scatter gather I/O” interfaces readv() and writev(), which read
or write only sequentially from or to a single file descriptor into several different buffers; vector storage interfaces, in
contrast, can read or write from random locations in multiple file descriptors.

Our proposed vector storage interfaces resemble the readx()/writex() POSIX extension interfaces, which were
designed to improve the efficiency of distributed storage clusters in high-performance computing. These interfaces
take multiple file descriptors, buffers, and offsets as arguments and execute the vector of requests typically on a
distributed, parallel file system. The differences are twofold: First, gaining the efficiency we seek requires pushing
the vector grouping as far down the storage stack as possible—in our case, to the storage device itself—requiring
both software and hardware support currently not available in off-the-shelf PCIe SSDs. Second, we emphasize and
evaluate the synergistic benefits of comprehensive vectorization: as we show in our evaluation, combining network
and storage vectorization provides a large boost in throughput without imposing extra latency for batching requests
together (the price of batching, once paid, is paid for all subsequent vector interfaces).

Storage devices today read and write individual sectors at a time. A future device supporting multiread or
multiwrite takes a vector of I/O requests as one command. In addition to saving memory (by avoiding duplicated
request headers and structure allocation) and CPU time (to initialize those structures, put more individual items on
lists, etc.), a major benefit of these vector interfaces is in drastically reducing the number of storage interrupts. A
multi-I/O operation causes at most one interrupt per vector. Interrupt mitigation features found on modern network
interface cards share these benefits, but using interrupt migitation features specifically for multi-I/O provides several
advantages over the network case: First, there are no heuristics for how long to wait before interrupting; the device
knows exactly how many requests are being worked on and interrupts exactly when they are complete. Second, it is
less likely to unintentionally delay delivery of a message needed for application progress—because the application
itself determined which requests to batch.

4. VECTOR INTERFACES TO STORAGE
We begin by describing the implementation and benefit of vector interfaces to storage, showing that they can help
systems match the potential throughput of high-speed SSDs for both asynchronous and synchronous access.

4.1 Vector interface to device
A storage device supporting a vector interface must implement a single I/O storage command containing multiple,
individual and independent requests to storage.

Implementation Details. Current I/O stacks do not contain commands to submit multiple-operand I/O operations
to a device. Although hosts can send up to 31 outstanding I/Os to SATA devices using Native Command Queuing
(NCQ), these devices process each I/O independently and generate a separate interrupt for each submitted I/O. The
SATA AHCI specification details a compatible design called Command Completion Coalescing, but we could not
find sufficient Linux and device support for this feature (Furthermore, these commands are not vectors—they can
have different operations, which, on flash, can result in a mix of low-latency reads waiting on high-latency writes for
completion).

Instead, we access the NVM device described above using a direct userspace interface. A software library
provides read()- and write()-like interfaces similar to POSIX. A non-vector read or write command prepares an
I/O structure containing a buffer, offset, and length as arguments, appends that I/O structure to a submission queue,
and notifies the device that a request is ready to be processed using DMA commands accessing a shared data structure.
The device polls the data structure, processes the request and uses DMA to transfer the result back, similarly signaling
back to the host that the request is complete and available in a completion queue.

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000

IO
PS

 in
 T

ho
us

an
ds

Threads

512-byte Read IOPS (Asynchronous I/O)

1 2 4 8 16 32 64

Solid = Multi, Dashed = Single
QD/T = 1
QD/T = 2

QD/T = 4
QD/T = 8

QD/T = 16

Figure 4: 512 Byte read throughput comparison between “single I/O” interface (dashed lines) and “multi-I/O”
interface (solid lines).

Our proposed read vec() and write vec() interfaces take multiple buffers, offsets, and lengths as arguments
and issue the requests to the device in one large batch. When delivered in a large batch, the NVM software running on
the emulator processes each individual command in submitted order, transfers the results into the host’s userspace
memory using DMA, and generates a single interrupt to the host only after all of the commands in the vector are
complete.

Benchmark. The benchmark in this section measures the raw capability of the NVM platform using asynchronous
I/O, which allows a single thread to submit many outstanding I/Os to the device. To understand its capabilities, we
vary queue depth, thread count, and vector width, whose definitions are as follows:

1. Queue depth per thread (QD/T): The number of asynchronous, outstanding I/O requests sent by one thread.
For single-I/O, an interrupt is generated for each individual request, and for each response, one new I/O can be
issued.

2. Thread count: The number of independent user-level threads issuing I/Os to the device.
3. Storage vector width: The number of I/Os for which one interrupt notifies the completion of the entire vector.

For our multi-I/O experiments in this section, the vector width is always set to half of the QD/T value to ensure
the device is busy processing commands while new requests are generated. A storage vector width of one
approximates libaio, where each I/O incurs an interrupt.

Figures 4 and 5 compare the performance of vector and single read for a variety of thread counts and queue
depth/multiread settings. Error bars are omitted because the variance is under 5% across runs. The solid line shows
the experiment where vector interfaces are used, and the dashed line shows when a single I/O is posted at a time (and
one interrupt is returned for each).

The NVM platform contains 4 DMA engines. Peak throughput requires at least 4 independent threads—each
uses one DMA channel regardless of the number of asynchronous I/Os it posts at once. Saturating the device IOPS
further requires maintaining a high effective queue depth, either by having a high queue depth per thread value or
by spawning many independent threads. Prior work has demonstrated that maintaining an I/O queue depth of 10 is

 0

 200

 400

 600

 800

 1000

 1200

IO
PS

 in
 T

ho
us

an
ds

Threads
1 2 4 8 16 32 64

Solid = Multi, Dashed = Single
QD/T = 1
QD/T = 2

QD/T = 4
QD/T = 8

QD/T = 16

512-byte Write IOPS (Asynchronous I/O)

Figure 5: Throughput of 512 B single-I/O writes (dashed lines) vs. multi-I/O writes (solid lines).

required to saturate the capabilities of current SSDs [23]; our results suggest that this number will continue to increase
for next generation SSDs.

Multiread and single I/O read throughput are similar because the read throughput is limited by the hardware DMA
capability, not the CPU. In contrast, multiwrite improves performance over single writes, particularly at high thread
counts and high queue depth. For example, for a queue depth of 16, single I/O write performance remains between
900K and 1M IOPS, whereas multiwrite performance reaches approximately 1.2M IOPS, an improvement of 20%.

Raw throughput, however, is a potentially misleading indicator of the benefits that vector interfaces offer over
libaio-like single I/O asynchronous interfaces. CPU efficiency, measured by IOPS/core, paints a very different
picture. We calculate efficiency by dividing the IOPS performance by CPU utilization reported in /proc/stat.

Figure 6 shows that at high vector widths, multiread and multiwrite are between 2–3x more efficient than using
single I/O. A large vector width reduces substantially the number of interrupts per I/O, allowing the CPU to devote less
time to interrupt handling. As we demonstrate in the networked system evaluation in Section 5, this reduced overhead
makes many more cycles available to application-level code and becomes critical to achieving high performance for
networked key-value storage applications.

4.2 Vector interfaces to key-value storage
Next, we describe using vector interfaces to access a local key-value datastore on the backend node.

The log-structured FAWN-DS local key-value datastore exports a synchronous put(string key, string
value)/get(string key) interface. We added get(vector<string> key) which returns a vector of key-value
results. For each lookup, FAWN-DS hashes the key, looks up an entry in a hashtable, and read()s from storage using
the offset from the hashtable entry.

The vector version requires taking in a vector of keys and calculating a vector of potential offsets from the
hashtable in order to issue a multiread() for all keys. One feature of FAWN-DS complicates vectorization: To
conserve memory, it stores only a portion of the key in the hashtable, so there is a small chance of retrieving the

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000

IO
PS

/c
or

e
in

 T
ho

us
an

ds

Threads

512-byte Write CPU Efficiency

1 2 4 8 16

Solid = Multi, Dashed = Single
QD/T = 1
QD/T = 2

QD/T = 4
QD/T = 8

QD/T = 16

Figure 6: Measurement of I/O efficiency in IOPS per core. A multi-I/O interface can reduce overall CPU
load by a factor of three.

wrong item when the key fragments match but the full keys do not. As a result, the keys being looked up may each
require a different number of read() calls (though most complete with only one).

The vector version of get() must inspect the multiread result to identify whether all entries have been retrieved;
for entries that failed, vector get() tries again, starting from the last hash index searched. Adding vector support
required changes to the code structure to manage this state, but only changed or added fewer than 100 LoC, all of
which were isolated in one code module.

Benchmarking multiget in FAWN-DS: One important difference between the FAWN-DS benchmark and the earlier
device microbenchmark is that the FAWN-DS API is synchronous, not asynchronous. This means that when FAWN-
DS reads from the storage device, the reading thread blocks until the I/O (or I/Os, in the case of multiread) complete.
Many applications program to the synchronous I/O model, though some systems support native asynchronous I/O
though libaio-like interfaces (asynchronous functions with callbacks).

Figure 7 shows the performance of 512B key-value lookups2 with an increasing number of threads. Single I/O
submission reaches a maximum of about one million key-value lookups per second even when using 32 threads,
whereas multireads of size 16 or 32 can provide approximately 1.8 million key-value lookups per second at 32 threads.
Maintaining a high effective queue depth is critical to saturating these devices: asynchronous I/O through libaio
(single I/O) or vector interfaces will be necessary for local applications to obtain full performance. Networked
applications will benefit further from choosing vector interfaces over asynchronous single-I/O interfaces (Section 5).

Vector interfaces and latency: Vector batching has a complex effect on latency. Batching waits for multiple requests
before beginning execution. It similarly does not complete until the last request in the batch completes. Both of these
effects add latency. On the other hand, it reduces the amount of work to be done by eliminating redundant work,
such as avoiding unnecessary interrupts and repeatedly acquiring potentially contended locks. It also achieves higher
throughput, and so on a busy server reduces the time that requests spend waiting for others to complete. These effects
reduce latency, particularly at high load.

232B I/O was no faster than 512B I/O on our platform, and larger I/Os quickly saturate device bandwidth.

 0

 200
 400

 600
 800

 1000
 1200

 1400
 1600

 1800
 2000

K
 L

o
o
k
u
p
s
/s

e
c

Threads

512B FAWN-DS Key-Value Lookups/s

1 2 4 8 16 32 64

Vector Width = 1
Vector Width = 2
Vector Width = 4

Vector Width = 8
Vector Width = 16
Vector Width = 32

Figure 7: 512B synchronous read throughput through FAWN-DS using synchronous I/O interface.

 8

 16

 32

 64

 128

 256

 512

 1024

 2048

L
a
te

n
c
y
 (

m
ic

ro
s
e
c
o
n
d
s
)

Threads

512B FAWN-DS Key-Value Latency

1 2 4 8 16 32 64

Vector Width = 1
Vector Width = 2
Vector Width = 4

Vector Width = 8
Vector Width = 16
Vector Width = 32

Figure 8: High vector widths don’t have proportionally higher latency: Growing vector width by a factor of
32 increases latency by only a factor of 8.

Figure 8 shows the how batching modestly increases latency at low load. The bottom left point in the graph
shows the minimum latency for retrieving a key-value pair using the NVM platform, which is approximately 10µs.
Doubling the vector width for a given number of threads does not double the latency of the entire operation until
the device nears throughput saturation. This means that modest amounts of batching can improve throughput more
than they increase latency. We also observe this behavior in the next section when evaluating a combined RPC and
storage environment, finding that increases in vector width significantly increase throughput with almost no additional
increase in latency: the optimal points in the latency vs. throughput curve are obtained using varying vector widths.

5. VECTOR INTERFACES TO NETWORKED KEY-VALUE STOR-
AGE

Exporting vector interfaces to non-volatile memory devices and to local key-value storage systems provides several
throughput, latency, and efficiency benefits. Next, we examine vector interfaces to RPCs and their interaction with the
vector interfaces provided by the storage device and key-value storage APIs.

5.1 Experimental setup
In contrast to the previous section whose experiments involved only local I/O, the experiments in this section all
involve queries made over the network using the FAWN-KV distributed key-value storage system. A cluster of Intel
Atom-based machines generates the query workload, using as many nodes as needed to ensure that the backend node,
not the load generators, are the bottleneck. The experiments described here use between 20 and 30 query generation
nodes. Queries are sent in an open loop: The query generators issue key-value queries at a specific rate regardless of
the rate of replies from the backend. The benchmark client uses three threads: one fills a token bucket at the specified
rate, another removes tokens to issue asynchronous requests to the backend device; and the final thread receives and
discards the responses.

For each experimental configuration, we use as many threads on the backend node as necessary to maximize
throughput without unnecessarily increasing latency. In practice, running the FAWN-KV software with between 8–16
independent threads to send I/Os to the NVM platform was sufficient.

Asynchrony: The benchmark utility issues asynchronous key-value requests because synchronous requests would
be bottlenecked by the end-to-end network latency of our environment. Although some applications may desire a
synchronous interface, an asynchronous interface can benchmark the limits of the backend system using a relatively
small number of clients and threads.

Request Size: This evaluation inserts and retrieves 4-byte values (prior sections used 512 byte values), because
transferring larger values over the network quickly saturates the server’s 1Gbps network. Internally, the server still
reads 512 bytes per request from storage. This change will slightly over-state the relative benefits of vector RPC
(below): Requests are unchanged, internal storage I/Os are unchanged, but the amount of time spent copying data into
responses—something not helped greatly by network vectorization—will decrease. We believe, however, that these
effects are modest.

Multiget and Multiread: Our evaluation in this section measures the impact of multiread, multiget, and their
combination when applied to FAWN-KV running on top of the NVM platform with vector interface support. As shown
in the previous section, reads and writes perform roughly the same on this device, but we note that specific NVM
technologies would likely have different read/write characteristics. For the purposes of identifying and evaluating
operation-independent overheads, we focus solely on the read/data retrieval path. We use the term multiread to
describe vector I/Os to the storage device, and we use the term multiget to describe vector RPCs over the network.
In figures, we refer to a multiget vector width of N as “GN” and a multiread vector width of M as “RM”. We use
multiread as a proxy for multiwrite, and multiget as a proxy for other types of RPCs such as multiput.

 0

 500

 1000

 1500

 2000

 0 50 100 150 200 250 300 350 400 450 500

L
a
te

n
c
y
 (

in
 u

s
)

K Lookups/sec

4B FAWN-KV Key-Value Lookups Varying Multiget

R1G1
R1G2

R1G4
R1G8

R1G16
R1G32

R1G64

Figure 9: Networked 4-byte throughput vs. latency as a function of the multiread width.

5.2 Results
We begin by measuring baseline throughput and latency without vectors. The R1G1 line in Figure 9 shows the
throughput versus latency as the query load increases. Because the measurement is open-loop, latency increases as
the system approaches full capacity.

At low load, the median latency is 220µs. As shown previously, the NVM device access time at low load is only
10µs, so most of this latency is due to network latency (approximately 100µs baseline), kernel, RPC, and FAWN-KV
application processing. Without vector interfaces, the system is capable of about 112K key-value lookup/sec at a
median latency of 500µs.

5.2.1 Multiget (vector RPC) alone
Network key-value throughput using standard storage and RPC interfaces (“R1G1”) is over an order of magnitude
lower than device capability and eight times lower than local I/O performance. At this point, the overhead from I/O,
local datastore lookups, RPC processing, and network I/O has greatly exceeded the CPU available on the backend
node. We begin by examining how much the Vector RPC interface can help reduce this overhead.

The remaining lines in Figure 9 show load versus latency for larger multiget widths. Multiget improves the
throughput (at reasonable latency) from 112K key-value lookups/sec to 370K for a multiget width of 16. Increasing
the vector width further increases latency without improving throughput.

Vector RPCs increase peak throughput more than they increase latency. For a multiget width of 4 (G4), the latency
at 50,000 key-value lookups/sec is 300µs compared to 220µs for single get. But the throughput achieved for G4 is
roughly 210,000 lookups/second, about twice the throughput of G1 at a latency of 330µs. The additional latency
comes from 1) the time to assemble a batch of key-value requests on the client, 2) the time to enqueue and dequeue all
requests and responses in a batch, and 3) the response time for all I/Os in a batch to return from the NVM platform.

Despite the 3× throughput improvement compared to single get throughput, the system is still far below the 1.8M
key-value lookups that the device can provide. Although multiget improves performance, per-RPC processing is not
the only bottleneck in the system.

 0

 2000

 4000

 6000

 8000

 10000

 0 50 100 150 200 250 300 350 400 450

L
a
te

n
c
y
 (

in
 u

s
)

K Lookups/sec

4B FAWN-KV Key-Value Lookups Varying Multiread

R1G1
R2G1

R4G1
R8G1

R16G1
R32G1

Figure 10: Networked 4-byte throughput vs. latency as a function of the multiread vector width. Multiread
creates batches of network activity that reduce interrupt and packet rate.

5.2.2 Multiread (vector storage) alone
Next, we hold the multiget width at 1 and vary the multiread width to understand to what degree multiread can
improve performance without multiget. Varying multiread alone is useful for environments where only local changes
to the storage server are possible.

Figure 10 plots throughput versus latency for multiread widths of 1, 2, 4, ..., 32. Grouping 8 reads together (from
different RPCs) improves throughput from 112K to 320K key-value lookups/sec while maintaining relatively low
latency. Multiread widths beyond 8 do not increase throughput without a corresponding large increase in median
latency.

The low-load latency behavior is different for multiread than for multiget. At very low load, latency scales linearly
with the multiread width, drops rapidly as offered load increases, and then increases as the system approaches peak
capacity. This behavior is caused by the queue structure that collects similar RPC requests together: Using a multiread
width N, the first key-value RPC that arrives into an idle system must wait for the arrival of N −1 other key-value
requests from the network before the batch of I/Os are issued to the device. At low load, these N −1 other requests
enter the system slowly and as load increases, request inter-arrival time shortens and reduces the time the first request
in the queue must wait.

Multiread’s implicit benefits: To our surprise, multiread both improves the efficiency of client network performance—
even without multiget—and increases cache efficiency on the backend. We term these two improvements implicit
benefits, in contrast with the explicit design goals of vector interfaces: multiread explicitly reduces the total number
of commands sent to the storage device, and correspondingly the number of interrupts received; multiget explicitly
reduces the number of send() and recv() system calls, serialization and deserialization overhead for individual RPC
messages, and number of packets (when Nagle’s algorithm is disabled).

Improved client efficiency: A multiread storage I/O contains multiple key-value responses. Because we use a
one-thread-per-connection model, these responses are destined to the same client, and so the RPC handling thread
sends these responses closely in time. The client receives a burst of several responses in one larger packet due to
packet coalescing, reducing significantly the number of ACKs sent back to the server: sequence numbers refer to

 0

 500

 1000

 1500

 2000

 0 200 400 600 800 1000 1200 1400 1600 1800

L
a
te

n
c
y
 (

in
 u

s
)

K Lookups/sec

4B FAWN-KV Key-Value Lookups Vector Direct

R1G1
R2G2
R4G4

R8G8
R16G16
R32G32

R64G64
R128G128

Figure 11: Throughput vs. latency for matched vector widths. Vector interfaces enable a single server to
provide 1.6M key-value lookups per second at a latency below 1ms.

bytes, not packets, so one ACK is generated for the entire burst. This improves the efficiency and performance of
the server because it incurs fewer network interrupts, but this behavior also can improve efficiency on clients: In
Figure 10, the backend server is the bottleneck, but when we reduced the number of clients to the point where clients
were the bottleneck, enabling only multiread on the server improved the unmodified clients’ performance by 10%.

Improved cache efficiency: A by-product of organizing requests into queues for multiread is that it improves the
backend’s cache efficiency, and hence sequential performance. On each get request, the servicing thread performs
a network read(), processes the get RPC, and inserts the request into a queue, repeating N times in a row while
keeping requisite data structures and code in cache. When the thread issues the multiread request, the hardware
interrupt generated will cause the processor’s cache to flush, but many of the structures needed for performing I/O are
no longer needed. This better cache locality increases the instructions per cycle (measured using CPU performance
counters) and contributes partially to the improvement that multiread provides over single reads in the networked
server evaluation. These benefits are similar to those found in Cohort Scheduling [17], where executing a group of
similar operations improves data and code locality and hence sequential performance.

5.3 Combining vector interfaces
Despite their benefits, multiread and multiget in isolation cannot achieve full system performance of 1.8M key-value
lookups per second. Multiread improves networked key-value retrieval by roughly 2x by reducing the storage interrupt
load, freeing the CPU for the costly network and RPC processing. Multiget provides a similar 2x improvement by
reducing the number of packets sent across the network and the RPC processing overhead. In this section, we show
that the two combine synergistically to increase total throughput by 14×.

When the multiget width is less than the multiread width, a queue structure is required to collect key-value
requests from multiple RPCs. We call this implementation the “intermediate queue” pattern. If the multiget width
and multiread width are the same, no intermediate queues are necessary, and the backend can execute a multiread
directly—we call this implementation the “direct” pattern.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 1 2 4 8 16 32 64 128

K
 L

o
o
k
u
p
s
/s

e
c
 (

M
a
x
)

Multiget/Multiread Vector Width

4B FAWN-KV Key-Value Lookups Combined Interfaces

Direct Call
Intermediate Queue

Figure 12: Throughput increases as storage and multiget widths increase. Using an intermediate queue
between the RPC and storage layer significantly degrades performance at large vector widths.

5.3.1 Matching multiread and multiget widths
The combinations of parameters R and G are numerous; thus, we begin by investigating the performance when the
multiget width equals the multiread width. In this case, we use the “direct” pattern that omits intermediate queues.

Figure 11 shows the latency versus throughput for equal vector widths using the direct pattern. Combining
multiread and multiget provides up to 1.6M key-value lookups per second from the backend, nearly saturating the
NVM device, and does so without increasing median latency beyond 1ms. Achieving this only requires vector widths
of 32. Because no intermediate queues are required, the latency behavior at low load is identical to that of just using
multigets.

The seemingly small overheads of enqueuing and dequeuing requests in the intermediate queue significantly
reduce performance at high load. Figure 12 shows the peak query throughput with increasing vector width. The
dashed line depicts the performance using an intermediate queue, while the direct call is shown as the solid line. With
a queue, the overhead of inserting and removing each get RPC’s data limits the performance to 1.2M key-value IOPS,
whereas the direct call implementation performs 1.7M IOPS at peak (unbounded latency). This highlights one of the
important benefits that vector interfaces offers over simple batching: Vector interfaces allow the system to propagate
vectors of work efficiently, whereas even intelligent batching would require intermediate queues to stage requests.

5.3.2 Unequal vector widths
Is it ever advisable to set the size of multiget and multiread widths differently? We consider scenarios where the
multiget width is fixed at different values as the independent variable and show how varying the multiread width
affects throughput and latency. When the multiget width is less than the multiread width, we use an intermediate
queue to collect requests together. When the multiget width is greater than the multiread width, we use the direct
implementation but issue reads to the device in sizes of the specified multiread width.

For low multiget widths, it is advisable to keep the multiread parameter low. Waiting for the multiread queue to
fill at low load creates long queuing delays. As load increases, however, it is beneficial to increase the multiread width

higher than the multiget width because it allows the system to achieve higher rates than otherwise possible. Thus, the
best strategy is to scale the multiread width higher as load increases to get the best tradeoff of throughput and latency.

For high multiget widths, regardless of load, it is always best to match RPC and multiread widths. When
multiread is low, issuing each request serially and taking an interrupt for each get request in the multiget batch
increases latency significantly. At low load, using a low multiread width approximately doubles median latency, while
at high load it is necessary to have a high multiread width to achieve higher throughput. The queue structure required
when multiread is greater than multiget, though, reduces the performance benefits having a high multiread width can
provide. Existing algorithms that vary vector RPC width with load might be adapted to also vary storage vector width
to provide high throughput at high load and low latency at low load [20].

In summary, vector interfaces used in isolation improve throughput by amortizing the cost of RPCs and reducing
interrupts and packet processing, but still provide only a small fraction of the underlying storage platform’s throughput
capabilities. By carefully combining both types of vector interfaces, however, we have shown both that such a system
is capable of 90% of optimal throughput and also how unequal vector widths trade between throughput and latency.

6. DISCUSSION AND FUTURE WORK
Using vector RPC and storage interfaces can significantly improve performance for a networked key-value storage
system. In this section, we ask: when are vector interfaces generally useful and when should they be avoided?

The principal scenarios where vector interfaces are useful share three properties: The services expose a narrow set
of interfaces, exhibiting a high degree of “operator redundancy”; the work being batched together shares common
work; and the requests in an initial vector follow a similar path to ensure that vectors are propagated together
throughout the distributed system.

Narrow Interfaces: Key-value and other storage systems often export a small number of external interfaces to
clients. Under high load, any such system will be frequently invoking the same operators, providing the opportunity
to eliminate redundant work found across these similar operations. If the interface is not narrow but the operator mix
is skewed towards a common set, then operator redundancy will be high enough that vector interfaces can provide a
benefit.

Similarity: The computational similarity found among get requests in a multiget allows us to eliminate redundant
work common across otherwise independent requests. In contrast, consider a vector “SELECT” interface for SQL
used to batch independent select queries. If the queries in a vector do not operate on the same table or process the
resulting data similarly, then there may be few opportunities for optimization because redundancy may not exist.
The cost of serializing independent requests that are computationally-unique would outweigh the benefits the small
amount of work sharing provides [15].

Vector Propagation: For maximum advantage, vectors of similar work should propagate together through the
system. In FAWN-KV, the key-value lookups in a multiget from a client to the backend remain together throughout
the lifetime of the operation. A mixed put/get workload, in contrast, would diverge once the request arrives at the
backend; the backend would need to inspect the elements in the vector to separate the puts and gets into two separate
vector operations. The system may then need to re-combine these two vectors before sending a response, adding
further coordination and serialization overhead. Other systems have successfully used the “stages with queues”
model to implement re-convergence for graphics pipelines [30]; PacketShader, for example, demonstrated that packet
processing does not significantly diverge in execution to erase the benefits that GPU-accelerated vector processing
can provide [14].

A related issue is whether to return partial results, and how to expose that interface to the clients. Partial results
can help reduce latency for requests where parts of the vector take longer than other parts. However, our results
suggest that there remain substantial efficiency benefits from avoiding queueing and re-queueing (the “direct” read
pattern in the previous section), so we approach this issue cautiously.

6.1 Using Vector Interfaces at Large Scale
Vector RPCs can be easily used when communicating with a single backend storage server. When the storage system
consists of tens to hundreds of machines, each storing a portion of the entire dataset, a client’s key requests might not
map to the same backend storage server, requiring that the client issue several RPCs each consisting of requests for
fewer keys. The ability to issue large multiget RPCs depends on three factors: key naming, access pattern, and the
replication strategy.

Key naming: Backend nodes are typically responsible for a subset of the key-value pairs in a distributed storage
system; a single storage node serves keys for multiple continuous partitions of the key space, and an index (often a
distributed B-tree or a simple map) maps keys to nodes. Most systems structure accesses to key-value storage based
on how keys are named. If the key is a hash of an application-specific name, then a multiget from a single client will
contain keys that are randomly distributed throughout the key space, reducing the likelihood that a multiget request
can be served by a single backend. If the keys are not hashed, then the application access pattern and key naming
policy determines how a set of key requests in a multiget map to backends.

Access pattern: Some applications, like webmail services, will exhibit a high degree of request locality: users
access and search only over their own mail. If keys corresponding to a particular user are prefixed with a unique user
ID or some other identifier that specifies locality in the key space, then requests for multiple keys might be served
by a small number of backend nodes, allowing the multiget RPC to maintain the original vector width. For other
applications, the access pattern might not exhibit locality: Social network graphs can be difficult to partition well [13],
so requests from a single client may need to access a large fraction nodes in the backend storage system.

Replication: Data in large-scale key-value storage systems are often replicated for fault-tolerance, as well as
higher performance and load balancing. Because replication provides multiple choices from which to obtain the same
data, it is possible to use replication to reduce the total number of nodes one needs to contact when using vector RPCs:
a multiget for two keys that map to different physical nodes can be satisfied by a single node if it contains a replica for
both keys.

However, the type of replication used determines whether replication can maintain the benefit of using vector
RPCs for higher performance. For example, if a system uses a hot-spare replication scheme (a replica node contains
the exact same data as its master), then two keys that map to different masters will not map to the same physical node.
On the other hand, a mapping system that randomly distributes data replicas slightly increases the probability that two
keys can be served by the same node and allows a client to issue a single multiget RPC to retrieve both key-value
pairs.

Application-specific replication schemes can do far better in ensuring that multiple client requests can hit only
one server. For example, SPAR is a middleware layer that partitions and replicates data for online social networks to
ensure that a user’s data (including one-hop neighbors) exists on a single server, while simultaneously minimizing the
overhead of replication [25].

Simulation of worst-case pattern: To understand how a random access workload interacts with vector RPCs
and replication, we use a Monte Carlo simulation to find the expected average width of vector RPCs as a key-value
storage cluster scales. We assume that keys map uniformly at random to nodes (including replicas of keys). We then
fix the desired vector width at 32, vary the number of servers N that data is distributed evenly across, and calculate
the minimum number of nodes a client must contact to retrieve 32 random keys (out of a large set of keys).3 Each
experiment is run 1000 times and we record the average minimum node count. We then divide the desired vector
width (32) by this number to calculate the average expected vector RPC width.

Figure 13 shows how increasing the number of servers affects the average vector RPC width. For a replication
factor of 1, the vector width starts at 32 for 1 server, reduces to 16 for 2 servers, etc. This line follows the formula
f (x) = 32

x−(x×(1− 1
x)

32)
, which can be derived from a balls and bins analysis assuming 32 balls and x bins.

3This requires calculating a minimum set cover where the universe is the 32 keys requested and the sets are the N mappings of server
number to keys.

 0

 5

 10

 15

 20

 25

 30

 35

 0 10 20 30 40 50 60

V
e
c
to

r
R

P
C

 W
id

th

Number of Servers

Client Vector Width = 32

Replication = 1
Replication = 3

Replication = 10

Figure 13: Simulation results showing the expected vector width of multiget RPCs, with the client making
requests for 32 random keys, as a function of cluster size and replication factor. Data is assumed to be
distributed evenly across all nodes, and replica nodes are chosen randomly (without replacement).

Increasing replication allows a client to maintain a higher vector width as the number of backend servers increases,
because the additional choice provided by replication allows the client to pick a smaller set of nodes to cover all keys.
For example, with a replication factor of 10 and 128 servers, a client can expect to contact minimum of ∼9 servers to
retrieve the 32 random keys in the vector request, resulting in an average vector width of ∼4 key requests sent to each
server.

Although random replication can improve the ability to maintain higher vector RPC widths for random access
patterns, these simulation results highlight the need to cluster keys intelligently (e.g., application-specific locality
hints or clustered replication techniques [25]) to ensure that vectors can be propagated with maximum efficiency.

6.2 How to expose vector interfaces
Vector storage interfaces can be implemented without requiring global modifications, whereas vector RPC interfaces
require coordinated changes. Therefore, where and how should these vector interfaces be exposed to other components
in a distributed system?

One option, as we have chosen, is that vector RPC interfaces are exposed directly to clients interacting with
key-value storage systems. For example, a social networking application may issue a multiget corresponding to
key-value requests for each friend, instead of requesting data serially one friend after another. Multiget in systems
like memcached and Redis suggest that applications today already have opportunities to use these vector interfaces.

Alternatively, a client library can implicitly batch synchronous RPC requests originating from different threads into
a single queue, issuing the vector request once a timeout or a threshold has been reached. Unfortunately, this creates
the same opaque latency versus throughput tradeoffs found in TCP’s Nagle option. A program using synchronous
vectors cannot advance until the entire vector is complete, giving full control to the application developer to decide
how to trade latency for throughput. Some cluster services separate clients from backend infrastructure using load

balancers or caching devices. Load balancers can coalesce requests arriving from different clients destined to the
same backend, but should use adaptive algorithms to control coalescing based on load [20].

6.3 Vector Network Interfaces
We have discussed vectorizing storage and RPC interfaces, but we did not need to vectorize the network socket layer
interfaces because our TCP socket access patterns already work well with existing Ethernet interrupt coalescing.
Our structuring of threads and queues ensures that we write in bursts to a single stream at a time. As we showed in
Section 5.2.2, when several packets arrive over the network close in time, Ethernet interrupt coalescing will deliver
multiple packets to the kernel with a single interrupt (which, in turn, often triggers only one outgoing ACK packet
from the kernel for the combined sequence range). The application recv() will process this larger stream of bytes
in one system call rather than one for each packet. On the sending side, Nagle’s algorithm can coalesce outbound
packets, though the application must still incur a mode switch for each system call.4

However, vector networking interfaces (such as multi send(), multi recv(), or multi accept()) can be
useful in other environments when code repeatedly invokes the same type of network function call with different
arguments close in time: for example, an event loop handler sending data might frequently call send() for multiple
sockets, and amortizing the cost of this system call across multiple connections may be useful. Many event-based
systems fall under this pattern, including systems build on libevent [24].

Vector network interfaces therefore can be useful depending on the structure of network event processing in
a key-value storage system. For a highly-concurrent server for which event-based systems use significantly lower
memory, we believe that implementing vector interfaces to the network might be necessary.

6.4 Vector interfaces for vector hardware
Programming to vector interfaces creates the potential for compiler-assisted code specialization for vector hardware.
This creates a unique opportunity to better use vector hardware available on emerging server platforms.

For example, preparing the multiread I/O command to the underlying storage device requires creating and
populating a structure describing the unique offset and size of each individual I/O. The multiget/multiread code
path in the backend server contains 10 for loops that iterate over vectors whose width matches the multiget factor.
A significant component of the increased latency at high vector widths comes from sequentially iterating through
these vectors: while we have eliminated redundant work, we have not yet vectorized the unique work. SSE hardware
today is capable of operating on 256-bit registers, and GPU hardware is capable of much wider widths. Exporting the
computations within these simple loops to specialized vector hardware instead of general-purpose sequential cores
could dramatically reduce latency at larger batch sizes. This is not merely wishful thinking: developers today have
tools to harness vector hardware, such as CUDA and Intel’s SPMD compiler (http://ispc.github.com/).

7. RELATED WORK
Vector interfaces: Prior systems have demonstrated the benefits of using an organization similar to vector interfaces.
“Event batches” in SEDA [34] amortize the cost of invoking an event handler, improving code and data cache locality.
Vector interfaces also share many common benefits with Cohort Scheduling [17] such as lower response time under
certain conditions and improved CPU efficiency. However, Cohort Scheduling benefits only from the implicit batching
that scheduling similar work in time provides, whereas vector interfaces can completely avoid re-executing the same
work for every request.

4The RPC package we use (Apache Thrift) explicitly disables Nagle’s algorithm by default to reduce the RPC latency added by batching
outgoing packets in the kernel.

http://ispc.github.com/

Batched execution is a well-known systems optimization that has been applied in a variety of contexts, including
recent software router designs [9, 14, 19] and batched system call execution [29, 27, 26]. Each system differs in
the degree to which the work in a batch is similar. The multi-call abstraction simply batches together system calls
regardless of type [27], whereas FlexSC argues for (but does not evaluate) specializing cores to handle a batch of
specific system calls for better cache locality. Vector interfaces target the far end of the spectrum where the work in a
vector is nearly identical, providing opportunities to amortize and eliminate the redundant computation that would be
performed if each request in the vector were handled independently [32].

In High Performance Computing, interfaces similar to our vector interfaces have been developed. Examples
include Multicollective I/O [21], POSIX listio and readx()/writex() extensions. These extensions provide batches
of I/O to an intermediate I/O director, which can near-optimally schedule requests to a distributed storage system by
reordering or coalescing requests. The existence of these interfaces suggests that application designers are willing and
able to use explicit vector interfaces to achieve higher performance.

Key-value stores: In recent years, several key-value storage systems optimized for flash storage have emerged
to take advantage of flash storage and non-volatile memory improvements. BufferHash [4], SkimpyStash [8],
FlashStore [7], and SILT [18] are examples of recent key-value systems optimized for low-memory footprint
deduplication or Content Addressable Memory systems. These systems evaluate performance on a prior generation of
SSDs capable of a maximum of 100,000 IOPS, whereas our work looks ahead to future SSD generations capable of
much higher performance. Their evaluations typically use synthetic benchmarks or traces run on a single machine.
In contrast, our work demonstrates that achieving high performance for a networked key-value storage system is
considerably more difficult, and that achieving the performance of local microbenchmarks may require redesigning
parts of local key-value systems.

Non-volatile memory uses: Several studies have explored both the construction and use of high-throughput,
low-latency storage devices and clusters [6, 28, 3, 33, 22]. Most closely related is Moneta [6], which both identified
and eliminated many of the existing overheads in the software I/O stack, including those from I/O schedulers, shared
locks in the interrupt handler, and the context switch overhead of interrupts themselves. Our work is orthogonal in
several ways, as vector interfaces to storage can be used on top of their software optimizations to yield similar benefits.
In fact, our userspace interface to the NVM device begins where they left off, allowing us to explore opportunities for
further improvement by using vector interfaces. Finally, we demonstrate that having the capability to saturate a NVM
device using local I/O does not imply that achieving that performance over the network is straightforward.

Programming model: Our implementation of vector interfaces requires programmers to explicitly use vector
abstractions (queues, barriers). In some cases, converting an operation to using a multi-interface can be difficult.
Libraries like Tame [16] provide novice programmers with basic non-vector interfaces and event-based abstractions,
but can execute operations using vectorized versions of those interfaces when possible.

Vector interfaces bear similarity to the “SIMT” programming model used in the graphics community, where
computations are highly-parallelizable, independent, but similar in operation. GPU fixed function and programmable
shader hardware matches well to these workloads where each functional core performs work in lockstep with
potentially hundreds of other threads in a warp [12, 30]. The popularity of CUDA programming suggests that
exposing non-vector interfaces to programmers and using vector-style execution for performance-critical sections can
provide the best of both worlds, provided that vector interfaces are exposed where needed.

8. CONCLUSION
As non-volatile memories continue to improve in speed, the software interface must also evolve to take full advantage
of these speed increases. We demonstrated that using vector interfaces pervasively throughout a distributed key-value
storage system can improve performance by over an order of magnitude when accessing a storage device capable
of delivering millions of I/Os per second. We also showed that using vectors at both the RPC and storage layers is
required to achieve this level of performance.

Acknowledgments
We would like to acknowledge our collaborators at Intel for providing us with the hardware that enabled this work.
We would also like to thank Luiz Barroso, Garth Gibson, and Greg Ganger for their helpful feedback.

References
[1] FAWN-KV: A distributed key-value store for FAWN. http://github.com/vrv/FAWN-KV.
[2] Apache Thrift. https://thrift.apache.org/, 2011.
[3] A. Akel, A. M. Caulfield, T. I. Mollov, R. K. Gupta, and S. Swanson. Onyx: A prototype phase change memory

storage array. In Proc. HotStorage, Portland, OR, June 2011.
[4] A. Anand, C. Muthukrishnan, S. Kappes, A. Akella, and S. Nath. Cheap and large CAMs for high performance

data-intensive networked systems. In Proc. 7th USENIX NSDI, San Jose, CA, Apr. 2010.
[5] D. G. Andersen, J. Franklin, M. Kaminsky, A. Phanishayee, L. Tan, and V. Vasudevan. FAWN: A fast array of

wimpy nodes. In Proc. 22nd ACM Symposium on Operating Systems Principles (SOSP), Big Sky, MT, Oct.
2009.

[6] A. M. Caulfield, A. De, J. Coburn, T. Mollov, R. Gupta, and S. Swanson. Moneta: A high-performance storage
array architecture for next-generation, non-volatile memories. In IEEE Micro, Dec. 2010.

[7] B. Debnath, S. Sengupta, and J. Li. FlashStore: high throughput persistent key-value store. Proc. VLDB Endow.,
3:1414–1425, Sept. 2010.

[8] B. Debnath, S. Sengupta, and J. Li. SkimpyStash: RAM space skimpy key-value store on flash. In Proc. ACM
SIGMOD, Athens, Greece, June 2011.

[9] M. Dobrescu, N. Egi, K. Argyraki, B.-G. Chun, K. Fall, G. Iannaccone, A. Knies, M. Manesh, and S. Ratnasamy.
RouteBricks: Exploiting parallelism to scale software routers. In Proc. 22nd ACM Symposium on Operating
Systems Principles (SOSP), Big Sky, MT, Oct. 2009.

[10] R. Freitas, J. Slember, W. Sawdon, and L. Chiu. GPFS scans 10 billion files in 43 minutes. IBM Whitepaper,
http://www.almaden.ibm.com/storagesystems/resources/GPFS-Violin-white-paper.pdf, 2011.

[11] fusion-io. Fusion-IO. http://www.fusionio.com.
[12] M. Garland and D. B. Kirk. Understanding throughput-oriented architectures. Communications of the ACM, 53

(11):58–66, Nov. 2010.
[13] J. Hamilton. Scaling at MySpace. http://perspectives.mvdirona.com/2010/02/15/ScalingAtMySpace.

aspx, 2010.
[14] S. Han, K. Jang, K. Park, and S. Moon. PacketShader: a GPU-accelerated software router. In Proc. ACM

SIGCOMM, New Delhi, India, Aug. 2010.
[15] R. Johnson, S. Harizopoulos, N. Hardavellas, K. Sabirli, I. Pandis, A. Ailamaki, N. G. Mancheril, and B. Falsafi.

To share or not to share? In Proc. VLDB, Vienna, Austria, Sept. 2007.
[16] M. Krohn, E. Kohler, and M. F. Kaashoek. Events can make sense. In Proc. USENIX Annual Technical

Conference, Santa Clara, CA, June 2007.
[17] J. R. Larus and M. Parkes. Using cohort scheduling to enhance server performance. In Proc. USENIX Annual

Technical Conference, Berkeley, CA, June 2002.
[18] H. Lim, B. Fan, D. G. Andersen, and M. Kaminsky. SILT: A memory-efficient, high-performance key-value

store. In Proc. 23rd ACM Symposium on Operating Systems Principles (SOSP), Cascais, Portugal, Oct. 2011.
[19] T. Marian. Operating Systems Abstractions for Software Packet Processing in Datacenters. PhD thesis, Cornell

University, Jan. 2011.

http://github.com/vrv/FAWN-KV
https://thrift.apache.org/
http://www.almaden.ibm.com/storagesystems/resources/GPFS-Violin-white-paper.pdf
http://www.fusionio.com
http://perspectives.mvdirona.com/2010/02/15/ScalingAtMySpace.aspx
http://perspectives.mvdirona.com/2010/02/15/ScalingAtMySpace.aspx

[20] J. C. McCullough, J. Dunagan, A. Wolman, and A. C. Snoeren. Stout: An adaptive interface to scalable cloud
storage. In Proc. USENIX Annual Technical Conference, Boston, MA, June 2010.

[21] G. Memik, M. T. Kandemir, W. Liao, and A. Choudhary. Multicollective i/o: A technique for exploiting inter-file
access patterns. volume 2, Aug. 2006.

[22] J. Ousterhout, P. Agrawal, D. Erickson, C. Kozyrakis, J. Leverich, D. Mazières, S. Mitra, A. Narayanan,
G. Parulkar, M. Rosenblum, S. M. Rumble, E. Stratmann, and R. Stutsman. The case for RAMClouds: Scalable
high-performance storage entirely in DRAM. In Operating Systems Review, volume 43, pages 92–105, Jan.
2010.

[23] M. Polte, J. Simsa, and G. Gibson. Enabling enterprise solid state disks performance. In Proc. Workshop on
Integrating Solid-state Memory into the Storage Hierarchy, Washington, DC, Mar. 2009.

[24] N. Provos. libevent. http://monkey.org/˜provos/libevent/.
[25] J. M. Pujol, V. Erramilli, G. Siganos, X. Yang, N. Laoutaris, P. Chhabra, and P. Rodriguez. The little engine(s)

that could: Scaling online social networks. In Proc. ACM SIGCOMM, New Delhi, India, Aug. 2010.
[26] A. Purohit, C. P. Wright, J. Spadavecchia, and E. Zadok. Cosy: Develop in user-land, run in kernel-mode. In

Proc. HotOS IX, Lihue, Hawaii, May 2003.
[27] M. Rajagopalan, S. K. Debray, M. A. Hiltunen, and R. D. Schlicting. Cassyopia: Compiler assisted system

optimization. In Proc. HotOS IX, Lihue, Hawaii, May 2003.
[28] E. Seppanen, M. T. O’Keefe, and D. J. Lilja. High performance solid state storage under linux. In 26th IEEE

Symposium on Massive Storage Systems and Technologies, May 2010.
[29] L. Soares and M. Stumm. FlexSC: Flexible system call scheduling with exception-less system calls. In Proc.

9th USENIX OSDI, Vancouver, Canada, Oct. 2010.
[30] J. Sugerman, K. Fatahalian, S. Boulos, K. Akeley, and P. Hanrahan. GRAMPS: A programming model for

graphics pipelines. In ACM Transactions on Graphics, Jan. 2009.
[31] V. Vasudevan, D. G. Andersen, M. Kaminsky, L. Tan, J. Franklin, and I. Moraru. Energy-efficient cluster

computing with FAWN: Workloads and implications. In Proc. e-Energy 2010, Passau, Germany, Apr. 2010.
(invited paper).

[32] V. Vasudevan, D. G. Andersen, and M. Kaminsky. The case for VOS: The vector operating system. In Proc.
HotOS XIII, Napa, CA, May 2011.

[33] S. Venkataraman, N. Tolia, P. Ranganathan, and R. Campbell. Consistent and Durable Data Structures for
Non-Volatile Byte-Addressable Memory. In Proceedings of the 9th USENIX Conference on File and Storage
Technologies (FAST ’11), San Jose, CA, Feb. 2011.

[34] M. Welsh, D. Culler, and E. Brewer. SEDA: An architecture for well-conditioned, scalable Internet services. In
Proc. 18th ACM Symposium on Operating Systems Principles (SOSP), Banff, Canada, Oct. 2001.

http://monkey.org/~provos/libevent/

	Introduction
	The Shrinking CPU-I/O Gap
	NVM platform and baseline
	FAWN-KV networked system benchmark

	Vector Interfaces
	Vector RPC interfaces
	Vector storage interfaces

	Vector Interfaces to Storage
	Vector interface to device
	Vector interfaces to key-value storage

	Vector Interfaces to Networked Key-Value Storage
	Experimental setup
	Results
	Multiget (vector RPC) alone
	Multiread (vector storage) alone

	Combining vector interfaces
	Matching multiread and multiget widths
	Unequal vector widths

	Discussion and Future Work
	Using Vector Interfaces at Large Scale
	How to expose vector interfaces
	Vector Network Interfaces
	Vector interfaces for vector hardware

	Related Work
	Conclusion

