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Abstract
We consider the problem of allocating network re-
sources across applications in a private cluster run-
ning data-parallel frameworks. Our primary obser-
vation is that these applications have different com-
munication requirements and thus require different
support from the network to effectively parallelize.
We argue that network resources should be shared in
a performance-centric fashion that aids parallelism
and allows developers to reason about the overall
performance of their applications. This paper tries
to address the question of whether/how fairness-
centric proposals relate to a performance-centric ap-
proach for different communication patterns com-
mon in these frameworks and engages in a quest for
a unified mechanism to share the network in such
settings.

1 Introduction

The question of how to allocate resources – CPU,
memory, and network bandwidth across jobs is cen-
tral in the operation of datacenters. Much of the
discussion on resource allocation, particularly in
the context of network bandwidth, has centered
around the principle of fairness [4, 6]. Fairness is
an appealing target since (done right) it can of-
fer many desirable properties including strategy-
proofness and non-starvation. However, the draw-
back of a purely fairness-centric approach is that
it may offer users/developers little guidance on the
performance they can expect while scaling their
applications. The high level question this paper
aims to raise is whether we can allocate datacen-
ter resources in a manner that allows developers
to reason about the performance they can expect
and whether/how a performance-centric approach
relates to fairness-centric proposals. We believe that

understanding the options and trade-offs here would
be particularly valuable to Internet datacenters op-
erated by, and in the interests of, a single organi-
zation − e.g., datacenters at Facebook, Microsoft
or Google, where concerns over competitive or non-
cooperative user behavior are less severe (though,
admittedly, not non-existent!) than in general cloud
environments.

In this paper, we focus on performance as mea-
sured by job completion time and on applications
that embrace data parallelism – by which we mean
that an application can partition its input into mul-
tiple sets and operate on individual sets in parallel.
That is, for a fixed input the total computation re-
mains the same whether it is done on a single ma-
chine or it is partitioned into N sets and done across
N machines in parallel. These applications appear
amenable to a simple, intuitive model for relating
resource allocation to performance, namely: given N
times more resources, such applications can expect
to complete N times faster.1 We show that while
resources such as CPU and memory adhere to this
simple model under data parallelism, the case of the
network is more complicated. This is illustrated in
the discussion that follows.

Frameworks such as MapReduce [3], Dryad [5],
and Spark [8] enable many applications to exploit
such data parallelism and typically proceed in sev-
eral computation stages requiring communication
between them. Performance of data-parallel applica-
tions depends on a variety of factors like CPU, mem-
ory, cache contention, disk contention etc.; however,
in this paper, we focus only on the network com-
munication aspect of these frameworks. Our pri-
mary observation is that, while the total compu-
tation in such frameworks is invariant to the num-
ber of machines that are used (thus adhering to the

1We will not get exactly N speed-up in practice due to
limited resources but it is a useful rule of thumb.



above mapping between scaling resources and per-
formance), we find that the total communication
(i.e., the total intermediate data to be transferred)
between stages may not follow this simple mapping.
That is, data parallelism need not imply network
parallelism.

Existing network allocation mechanisms fall short
because either they only make first-order approxi-
mation of proportionality (e.g., proportional to the
number of VMs [6] or the number of sources [7])
in the absence of application semantics, or they re-
quire applications to explicitly specify their network
requirements [1] which are often not known. We
observe that the extent to which the simple model
of parallelism breaks down actually depends on the
communication semantics of cluster computing ap-
plications. We illustrate this by picking two types
of transfers [2] that lie at the opposite ends of the
spectrum (we later generalize this notion in §2.3):
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Figure 1: Different types of transfers.

• Shuffle: Each node in the previous stage par-
titions its computed data into N sets and sends
each set to one of the nodes in the next stage
(e.g., the λ data generated in Figure 1(a) is split
in two λ

2 sets and sent to the two nodes on the
right).

• Broadcast: Each node in the previous stage
sends all of its computed data to every node in
the next stage (e.g., all of the λ data generated
in Figure 1(b) is sent to each of the nodes on
the right).

Different applications require different types of
transfers. Applications suited for the MapReduce
framework require a shuffle of the intermediate data,
while several machine learning applications require
broadcast [9].

Let us now understand why the invariant on the
total communication does not hold with the help of
a specific example. Consider Figure 2, where a job
wants to split its computation across two machines
(instead of just one) for both the stages and under-
stand the overhead of parallelization on the com-
munication. Assume that when the job ran with
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Figure 2: Total communication of a job scales dif-
ferently depending on the type of transfer it uses.

only one machine in both the stages, it generated 2λ
amount of data to be transferred to the second stage.
We consider both the cases, one where the applica-
tion required a shuffle of the intermediate data and
the other where the application required broadcast-
ing the intermediate data. While in the shuffle case,
the total communication remains the same (2λ ), for
broadcast the total communication doubles to 4λ .
Hence, we note that in order to preserve the notion
of parallelism, while it is sufficient to give twice as
much network bandwidth in the shuffle case (a lin-
ear scaling), we need to give four times as much net-
work bandwidth in the broadcast case (a quadratic
scaling). It is important to note that this overhead
in communication is not a result of a breakdown in
an application’s parallelism; i.e., the application did
not suddenly generate more data (which remains at
2λ ) but rather that the extra network traffic was a
result of scaling up. In short: scaling even a sim-
ple application can result in an additional network
overhead (depending on the transfer type required
by the application). We show that accounting for
this potential overhead is key to achieving a con-
sistent model that maps resource allocation to job
completion times.

Building on the above observations, we propose
a new perspective on network sharing in which net-
work resources are allocated in support of preserving
the intuitive benefits of parallelism. This is in con-
trast to prior proposals that argue for network allo-
cations that are proportional to the number of nodes
that a job uses (e.g., FairCloud [6]) or proportional
to the number of flows that a job instantiates (e.g.,
per-flow sharing as approximated by TCP). In sup-
port of this perspective, we aim for a performance-
centric sharing mechanism that isolates the achiev-
able speed-up due to parallelism and the perfor-
mance degradation due to limited resources ensur-
ing that, in the case where the network is the bottle-



neck, jobs are penalized equally w.r.t their completion
times; i.e., all else being equal, jobs suffer an equal
degradation in their job completion times. We then
make the following observations:

• For clusters running applications requiring only
shuffles (e.g., MapReduce), sharing the network
in proportion to the number of machines that
a job uses [6] is the performance-centric shar-
ing mechanism and that per-flow sharing (equal
share for every flow) hurts the performance for
small jobs.

• For clusters running applications requiring only
broadcasts (e.g., several machine learning ap-
plications), per-flow sharing (approximated by
TCP) results in preserving the benefit of par-
allelism in completion times and proportional
sharing (in terms of the number of machines)
limits parallelism for large jobs.

• For frameworks supporting multiple types
of transfers, the performance-centric sharing
mechanism assigns network shares based on the
semantics of the transfer.

2 Network Sharing to Support Paral-
lelism

In this section, we first consider two types of data-
parallel clusters, one supporting applications requir-
ing only shuffles and the other supporting applica-
tions requiring only broadcasts, and we show that
from the perspective of parallelism, different net-
work sharing mechanisms are required in the two
clusters. We qualify these transfers in terms of their
behavior when the application scales and generalize
them to arbitrary types. The perspective of paral-
lelism that we take in this context is that a scale-up
of N should give the job a speed-up of N for a fixed
input size.

2.1 Shuffle
Let us take a MapReduce cluster that runs jobs re-
quiring a shuffle of the intermediate data between
the two computation stages (map and reduce). Con-
sider a job that needs to perform word count across
two files. For simplicity, assume that the two files
represent equal amount of work to do and the key-
space is uniformly partitioned. We study the follow-
ing two alternatives as shown in Figure 3.

• A: A mapper sequentially processes the two files,
transfers 2λ data over the network (assuming
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Figure 3: Network allocation of a MapReduce job.

that a single file generates λ data), and then a
single reducer processes this 2λ data.

• B: Two mappers process the files in parallel and
each mapper generates λ data, transfers λ

2 to
each of the reducers over the network, and fi-
nally each reducer processes λ data ( λ

2 from
each mapper) in parallel.

We denote the times for the three phases (map,
shuffle, and reduce) as tm, ts, and tr; the total time
of the job being tm + ts + tr. With the above assump-
tion of uniformity, tBm =

tAm
2 and tBr =

tAr
2 since they

were done in parallel. Let us now consider the shuf-
fle phase, a per-flow mechanism would give an equal
share (α) to each of the flow. This implies that
tBs =

λ
2α =

2λ
α
4 =

tAs
4 , which implies tB < tA/2. Hence,

with per-flow sharing, the job achieves a larger share
of the network that it needs in order to achieve a
speed-up of 2. Since the total network resources
are finite, this comes at the cost of taking away the
network share from other jobs which will now get
a smaller share than what they should. In other
words, a per-flow sharing mechanism gives larger



 λ 
 λ 

 2λ Am Ar 

Bm Br 

 λ Bm Br 

 2λ 

 λ 

 λ 

 λ 

tAm
 tAs

= 2λ/α tAr 

tAm
/2 tAr

/2 tBs
= 2λ/α = tAs

 

α 

α/2 

tB > tA/2 

(a) Unbalanced network share (broadcast)

 λ 

 2λ Am Ar 

Bm Br 

 λ Bm Br 

 2λ 

tAm
 tAs

= 2λ/α tAr 

tAm
/2 tAr

/2 tBs
= λ/α = tAs

/2 

tB = tA/2 

α 

α  λ 

 λ 

 λ 

 λ 

(b) Balanced network share (broadcast)

Figure 4: Network allocation of a broadcast-only
job.

jobs more than their required share and thus hurts
performance for the small jobs. Instead, if the rate of
each of the flows was reduced to α

2 , the new time for
shuffle will become tBs =

λ
α = tAs/2 making tB = tA/2.

The total network share of the job becomes equal
to 2α , increasing in proportion with the the number
of machines and thus proportional mechanisms (e.g.,
[6]) are performance-centric in this case.

2.2 Broadcast
Let us now consider another cluster that sup-
ports applications that only broadcast the interme-
diate data from one computation stage to another.
While several machine learning applications need
this model (e.g., eigenvalue decompositions or the al-
ternating least squares method [9] used for the Net-
flix prize winning entry that partitions the feature
vectors for users and movies separately and requires
broadcasts of the vectors between the two stages
in an iterative fashion), the illustrative example we
look at is the problem of determining whether a mu-
sical piece has been composed by Bach or Britney

Spears, and we have a collection of their musical
pieces to train. The job first needs to compute fea-
ture vectors over the two sets of input data (one for
pieces of Bach and the other for Britney), and then
both detectors are trained using the feature vectors
corresponding to both Bach’s and Britney’s pieces
thus necessitating a broadcast of the intermediate
data to train the detectors in parallel. Similar to
the shuffle case, we consider the following two alter-
natives for the job to run (Figure 4).

• A: In the first stage, training data correspond-
ing to both categories is processed sequentially
and the computed feature vectors (a data of 2λ
assuming the training data consisted of same
number of images for both the categories) are
transferred to the next stage where both the
classifiers (both of them requiring the entire 2λ
data since they require both positive and nega-
tive examples) are trained sequentially.

• B: The feature vector computation for both the
categories is done in parallel in the first stage,
one node corresponding to pieces by Bach and
the other corresponding to pieces by Britney
Spears. Each of them generate λ amount of
data (the feature vectors) and need to pass the
entire data to each of the two classifiers in the
next stage.

We use a notation similar to the shuffle case, but
rename transfer time as tb. Again assuming unifor-
mity of the input data, tBm =

tAm
2 and tBr =

tAr
2 since

they were done in parallel. For the transfer, pro-
portional allocation, that was desirable for shuffles,
would give α

2 to each of the flows of B. This implies
that tBb =

2λ
α = tAb and thus tB > tA/2. Therefore, pro-

portional network allocations would prohibit achiev-
ing ideal speed up and thus limit parallelism for large
jobs for broadcast-only clusters. Instead if each flow
of B was still given a share of α (per-flow), the new
time for the transfer will become tBs =

λ
α = tAs/2 mak-

ing tB = tA/2. Therefore, from the perspective of par-
allelism, per-flow allocations are performance-centric
in this case.

To summarize, we argue that parallelism-
driven network sharing yields different design
points for shuffle-only and broadcast-only clusters.
Performance-centric network allocations, therefore,
accommodate the semantics of the transfer. We
present a concise qualitative diagram to illustrate
this notion in Figure 5. The x-axis denotes the de-
gree of parallelism, i.e., the scale up in terms of the
number of machines and the y-axis denotes the po-
tential speed up. For shuffle, per-flow based net-
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Figure 5: Network sharing mechanisms should take
the semantics of transfers into account.

work sharing (e.g., TCP) gives higher speedup than
the computational speed-up, implying that jobs get
more than their required share, while proportional
allocations achieve the required balance. However,
proportional allocations in the case of a broadcast
makes the jobs perform worse compared to their ex-
pected speed-up and in this case, per-flow allocations
achieve the balance.

2.3 Complexity of a Transfer
In the previous two subsections we observed that a
scale up of N does not affect the total amount of
data transferred during shuffles, but it makes it go
up by a factor of N for broadcasts. We use this
observation to generalize the notion of a transfer.
We call a transfer to be an xN-transfer if x is the
factor by which the amount of data transferred in-
creases when a scale up of N is done, x ∈ [1,N].2 A
shuffle is a 1N-transfer and a broadcast is an NN-
transfer. Performance-centric network allocation in
a cluster that runs applications requiring only xN-
transfers means the following: when the applications
are scaled up by a factor of N, their network shares
should be increased by a factor of (N×x) to achieve
a (proportional) speed-up of N.

3 Heterogeneous Frameworks and
Congested Resources

In the previous section, we considered frameworks
that exclusively used only shuffle, broadcast or the

2x > N implies that the application would be generating
more data than before; this is not possible because scaling up
of a data-parallel application does not change its input, nor
does it change the computation function. x ≥ 1 is a trivial
lower bound assuming that the application will generate at
least as much data as it was generating before the scale up.

more general xN-transfer for communicating between
different stages. We now address the question of how
to share the network in frameworks that use more
than one of the above transfers and understand the
behavior when resources get bottlenecked. As an
example, frameworks like Spark [8] and Dryad [5]
support both the shuffle and the broadcast primi-
tives. We showed that for shuffles, the network share
should be proportional to the number of machines
that the job uses, say N. For broadcasts, this share
should be proportional to N2.
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Figure 6: Job completion times degrade uniformly
when resources are bottlenecked.

We argue that even with different types of trans-
fers running in a cluster, the notion of performance-
centric allocations that implies equal degradation in
job completion times when the resources get bot-
tlenecked can be retained if independent decisions
are made depending on the type of the transfer. In
essence, the idea is to effectively isolate the speed-
up achievable due to parallelism and the degrada-
tion due to limited resources. Thus, in the event of
contention, the job’s new completion time, y′, can
be compared to its original running time, y, by the
following equation:

y′← (α)×
( y

N

)
where α, the degradation due to congestion, is the
same for the jobs and thus, the completion time de-



grades uniformly for the both of them. We illustrate
this with the help of an example. Consider the word
count job, A, and the musical-piece categorization
job, B, running together in a cluster as illustrated in
Figure 6. For simplicity, we assume that all transfers
take place on a single link (with capacity C = 1Gbps)
and there is no other workload in the cluster. If both
the jobs used a single machine in both the stages, as-
suming that they had same amount of data (2Gb)
to transfer, the transfer in both the cases finishes in
4s since both of them get a share of C

2 = 500Mbps.
Now when both the applications scale to use two
machines on either side, the share of job A is propor-
tional to 21 = 2 and the share of job B is proportional
to 22 = 4. Therefore, A gets C

3 ≈ 333Mbps and B gets
2C
3 ≈ 666Mbps implying that both the transfers fin-

ish in 6s and thus face an equal degradation.

4 Discussion and Future Directions

There has been a lot of recent work on how to share
the network in a datacenter. The general focus of
these efforts has been to support multi-tenancy and
ensure isolation and fairness [7, 1, 6] between differ-
ent tenants where properties like strategy-proofness,
proportionality etc. are desirable. In this paper, in-
stead of talking about the problem of network shar-
ing in general settings, we focus on private clusters
running data-parallel frameworks. This setting pro-
vides us with an alternate view of the world, where
the entities are not malicious and the aim is to
achieve parallelism for the workloads. We present a
new perspective to share the network which consid-
ers whether the network provides the desired sup-
port for the applications to effectively parallelize.
We observe that the present approaches do not gen-
eralize to achieve this goal and to remedy it, network
sharing should be done based on the application se-
mantics. In particular, we showed why the shar-
ing mechanism should be different for frameworks
shuffling the intermediate data and those employing
broadcast as the communication pattern. We also
gave some intuition about network sharing when the
framework provides both (along with other) com-
munication primitives, though this should only be
treated as a starting point.

In future work, we want to analytically and exper-
imentally understand how these frameworks behave
when the ideas presented in this paper are used. In
particular, we want to understand whether mecha-
nisms based on this criterion only result in redistri-
bution of the completion times across different jobs
or are they also able to achieve a balance to reduce
the total completion time of all jobs. One other ques-

tion that remains to be answered is what happens
when the scaling up factors are different on either
side; the analysis in that case becomes much more
complicated and therefore requires further thought.
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