
The Cost of Fault Tolerance
in Multi-Party Communication Complexity

∗

Binbin Chen
Advanced Digital Sciences Center

Republic of Singapore

binbin.chen@adsc.com.sg

Haifeng Yu
National University of Singapore

Republic of Singapore

haifeng@comp.nus.edu.sg

Yuda Zhao
National University of Singapore

Republic of Singapore

zhaoyuda@comp.nus.edu.sg

Phillip B. Gibbons
Intel Labs

Pittsburgh, PA, USA

phillip.b.gibbons@intel.com

ABSTRACT

Multi-party communication complexity involves distributed com-
putation of a function over inputs held by multiple distributed play-
ers. A key focus of distributed computing research, since the very
beginning, has been to tolerate crash failures. It is thus natural to
ask “If we want to compute a certain function in a fault-tolerant

way, what will the communication complexity be?” This natural
question, interestingly, has not been formally posed and thoroughly
studied prior to this work.

Whether fault-tolerant communication complexity is interesting
to study largely depends on how big a difference failures make.
This paper proves that the impact of failures is significant, at least
for the SUM aggregation function in general networks: As our cen-
tral contribution, we prove that there exists (at least) an exponen-

tial gap between the non-fault-tolerant and fault-tolerant commu-
nication complexity of SUM. Our results also imply the optimality
(within polylog factors) of some recent fault-tolerant protocols for
computing SUM via duplicate-insensitive techniques, thereby an-
swering an open question as well.

Part of our results are obtained via a novel reduction from a
new two-party problem UNIONSIZECP that we introduce. UNION-
SIZECP comes with a novel cycle promise, which is the key en-
abler of our reduction. We further prove that this cycle promise and
UNIONSIZECP likely play a fundamental role in reasoning about
fault-tolerant communication complexity.

Categories and Subject Descriptors

F.1 [Computation by Abstract Devices]: Complexity Measures
and Classes; F.2 [Analysis of Algorithms and Problem Complex-

ity]: Nonnumerical Algorithms and Problems

General Terms

Theory, Algorithms

∗The first three authors of this paper are alphabetically ordered.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODC’12, July 16–18, 2012, Madeira, Portugal.
Copyright 2012 ACM 978-1-4503-1450-3/12/07 ...$10.00.

Keywords

Communication complexity, fault tolerance, aggregation functions,
promise problems, wireless networks

1. INTRODUCTION

Fault tolerance in communication complexity and our exponen-

tial gap. Multi-party communication complexity [10] involves dis-
tributed computation of a function over inputs held by multiple dis-
tributed players. A key focus of distributed computing research,
since the very beginning, has been to tolerate failures. (Through-
out this paper, failures refer to node crash failures unless otherwise
mentioned.) It is thus natural to ask “If we want to compute a cer-

tain function in a fault-tolerant way, what will the communication

complexity be?” For the question to be meaningful, we impose two
restrictions before moving forward. First, we allow the computa-
tion to ignore/omit the inputs held by those players that have failed
(i.e., crashed) or been disconnected. This means that the function
needs to be well-defined over any subset of the inputs. Second, we
will assume that there is one special root player that never fails and
only this player needs to learn the final result. This allows us to
focus on the communication complexity of the function instead of
the difficulty of, for example, achieving fault-tolerant distributed
consensus. This also nicely maps to our target scenarios later in
wireless sensor networks and wireless ad-hoc networks, where the
root corresponds to the base station.

While the above question is natural, interestingly, it has not been
formally posed and thoroughly studied — see later for our specula-
tions on the possible reasons. Whether such fault-tolerant commu-
nication complexity is interesting to study, given the extensive re-
search on “non-fault-tolerant” communication complexity, largely
depends on how big a difference failures can make. This paper
proves that the impact of failures is significant, at least for the SUM

function1 in networks with general topologies: As the central con-
tribution of this work, we prove that there exists (at least) an expo-

nential gap between the non-fault-tolerant (NFT) and fault-tolerant
(FT) communication complexity of SUM. Here FT communication
complexity is the smallest communication complexity among all
fault-tolerant protocols that can tolerate an arbitrary number of fail-
ures, while NFT communication complexity corresponds to all pro-

1As an example where the impact of failures is not significant, con-
sider the MAX function. Our technical report [11] gives a simple
folklore fault-tolerant MAX protocol based on binary search, where
each node sends only a logarithmic number of bits.

�����������	
�������
�����	������
������������
�������������
�������������������
�������	�������������������
�������
�����������
���������������������

��� �
����������

�

���������	���

�����
��	�

�

������������������	
� � ��

������������	
�

���������	���

�����
��	�

��!� ��		��������
Figure 1: Summary of our exponential gaps. All NFT upper bounds are either well-known or are obtained via standard tricks —

they are described in Section 3. All FT lower bounds are novel and are our main contributions. They are obtained in Section 4 (for

1 ≤ b ≤ 2 − c), Section 5 (for 2 − c < b ≤ N0.25−c or 1

ǫ0.5−c), and Section 7 (for b > N0.25−c or 1

ǫ0.5−c).

tocols. To our knowledge, ours is the first such result on FT com-
munication complexity. This exponential gap attests that FT com-
munication complexity needs to be studied separately from NFT
communication complexity.

The SUM function. Consider a synchronous wireless network (e.g.,
a wireless sensor network or a wireless ad-hoc network) with N
nodes and some arbitrary topology. Each node has a binary value,
and the SUM function asks for the sum of all the values. Note
that SUM can be easily reduced to and from some other interest-
ing aggregation functions such as SELECTION. Communication
complexity has significant practical relevance here since i) wireless
communication usually consumes far more energy than local com-
putation, and needs to be minimized for nodes operating on battery
power or nodes relying on energy harvesting, and ii) the capacity
of wireless networks does not scale well [18].

Existing results on SUM. In failure-free settings, by leveraging in-
network processing, a trivial tree-aggregation protocol can compute
SUM with zero-error while requiring each node to send O(log N)
bits. For (ǫ, δ)-approximate results, it is possible to further reduce
to O(log 1

ǫ
+ log log N) bits per node for constant δ. In compari-

son, to tolerate arbitrary failures, we are not aware of any zero-error
protocol for computing SUM that is better than trivially having ev-
ery node flood its id together with its value and thus requiring each
node to send O(N log N) bits. For (ǫ, δ)-approximate results, re-
searchers have proposed some protocols [5, 14, 25, 26, 30] where
each node needs to send roughly O(1

ǫ2
) bits for constant δ (after

omitting logarithmic terms of 1

ǫ
and N). All these protocols con-

ceptually map the value of each node to exponentially weighted
positions in some bit vectors, and then estimate the sum from the
bit vectors. Same as in one-pass distinct element counting algo-
rithms in streaming databases [1, 16], doing so makes the whole
process duplicate-insensitive. In turn, this allows each node to push
its value along multiple directions to guard against failures. Note
however, that duplicate-insensitive techniques do not need to be
one-pass, and furthermore tolerating failures does not have to use
duplicate-insensitive techniques. For example, one could repeat-

edly invoke the tree-aggregation protocol until one happens to have
a failure-free run. There is also a large body of work [3,7,12,13,20,
22, 23] on computing SUM via gossip-based averaging (also called
average consensus protocols). They all rely on the mass conserva-
tion property [23], and thus are vulnerable to node failures. There
have been a few efforts [15, 21] on making these protocols fault-
tolerant. But they largely focus on correctness, without formal re-
sults on the protocol’s communication complexity in the presence
of failures. Despite all these efforts, no lower bounds on the FT
communication complexity of SUM have ever been obtained, and
thus it has been unknown whether the existing protocols can be
improved.

Our results. Our main results in this paper are the first lower
bounds on the FT communication complexity (or FT lower bounds

in short) of SUM, for public-coin randomized protocols with zero-
error and with (ǫ, δ)-error. These FT lower bounds are (at least)
exponentially larger than the corresponding upper bounds on the
NFT communication complexity (or NFT upper bounds in short) of
SUM, thus establishing an exponential gap. Private-coin protocols
and deterministic protocols are also fully but implicitly covered,
and our exponential gap still applies.

Specifically, since there is a tradeoff between communication
complexity and time complexity, Figure 1 summarizes our FT lower
bounds when the time complexity of the SUM protocol is within b
aggregation rounds (defined in Section 2), for b from 1 to ∞. For
b ≤ N0.25−c or 1

ǫ0.5−c where c is any positive constant below 0.25,
the NFT upper bounds are always at most logarithmic with respect
to N or 1

ǫ
, while the FT lower bounds are always polynomial.2 For

b > N0.25−c or 1

ǫ0.5−c , the NFT upper bounds drop to O(1), while
the FT lower bounds are still at least logarithmic. Our results also
imply that under small b values, the existing fault-tolerant SUM

protocols (incurring O(N log N) or O(1

ǫ2
) bits [5, 14, 25, 26, 30]

per node) are actually optimal within polylog factors.

2Here for (ǫ, δ)-approximate results, we only considered terms con-
taining ǫ. Even if we take the extra terms with N into account, our
exponential gaps continue to exist as long as 1

ǫc = Ω(log N).

Our approach. Our FT lower bounds for b ≤ 2 − c are obtained
via a simple but interesting reduction from a two-party communica-
tion complexity problem UNIONSIZE, where Alice and Bob intend
to determine the size of the union of two sets. In the reduction,
without knowing Bob’s input, Alice can only simulate the SUM

oracle protocol’s execution in part of the network. Furthermore
this part is continuously shrinking due to the spreading of such un-
known information. Failures play a fundamental role in the reduc-
tion — they hinder the spreading of unknown information. The FT
lower bounds under b ≤ N0.25−c or 1

ǫ0.5−c are much harder to ob-
tain. There we introduce a new two-party problem called UNION-
SIZECP, which is roughly UNIONSIZE extended with a novel cy-

cle promise. Identifying this promise is a key contribution of this
work, which enables the continuous injection of failures to further
hinder the spreading of unknown information. We then prove a
lower bound on UNIONSIZECP’s communication complexity via
information theoretic arguments [4]. This lower bound, coupled
with our reduction, leads to FT lower bounds for SUM. We further
prove a strong completeness result showing that UNIONSIZECP is
complete among the set of all two-party problems that can be re-
duced to SUM in the FT setting via oblivious reductions (defined
in Section 6). Namely, we prove that every problem in that set can
be reduced to UNIONSIZECP. Our proof also implicitly derives
the cycle promise, thus showing that it likely plays a fundamen-
tal role in reasoning about the FT communication complexity of
many functions beyond SUM. Finally, our FT lower bounds under
b > N0.25−c or 1

ǫ0.5−c are obtained by drawing a strong connec-
tion to an interesting probing game, and then by proving a lower
bound on the probing game.

Other related work. Despite the developments (e.g., [8, 10, 19,
27, 28]) on different models for communication complexity, to the
best of our knowledge, fault tolerance has never been considered.
Among them, the closest setting to fault tolerance is perhaps unreli-
able channels [8, 27, 28] that either flip the bits adversarially or flip
each bit iid. The specific techniques and insights there have limited
applicability to our fault-tolerant setting. Under the iid unreliable
channel model, there have also been some information-theoretic
lower bounds [2, 17] on the rates of distributed computations. We
suspect that such a lack of prior work on fault tolerance is due to
two reasons. First, one needs to define correctness in a meaning-
ful way when failures are possible, since some of the inputs can
be missing. For this work, recent applications in wireless sensor
networks have shown us how to do so [5]. Second, communication
complexity problems tend to be challenging to study, and taking
failures into account only makes things harder. For this work, we
rely on several quite recent results [9, 19].

2. MODEL AND DEFINITIONS
This section describes the system model and formal definitions

used throughout this paper, except in Section 8. For clarity, we
defer to Section 8 various relaxed/extended versions of the sys-
tem model and definitions, under which our exponential gap results
continue to hold. All “log” in this paper means log2.

System model. We consider a wireless network with N nodes

and an arbitrary undirected and connected graph G as the network
topology. Each node has a unique id, and one of the N nodes is
the root. We assume that the topology G (including the ids of each
node in G) is known to all nodes. The system is synchronous and
a protocol proceeds in synchronous rounds. In each round, a node
(which has not failed) first performs some local computation, and
then does either a send or receive operation (but not both). We also
say that the node is in a sending state or a receiving state in that

round, respectively. Our results are insensitive to whether colli-
sions are possible, but to make everything concrete, we still adopt
and stick to the following commonly-used collision model. By do-
ing a send, a node (locally) broadcasts one message to all its neigh-
bors in G. By doing a receive, the node receives the message sent
by one of its neighbors j iff node j is the only sending node among
all node i’s neighbors. If multiple neighbors of i send in the same
round, a collision occurs and node i does not receive anything. All
our results hold regardless of whether node i can distinguish silence
from collision.

Failure model. The root never fails. Any other node in G may
experience crash failures (but not byzantine failure), and the total
number of failures can be up to N − 1. See Section 8 for more dis-
cussion on the number of failures. To model worst-case behavior,
we have an adversary determine which nodes fail at what time. The
adversary can be adaptive to the behavior of the protocol (including
the coin flips) so far, but it cannot predict future coin flip results.

The SUM problem. Here each node i in G has a binary value wi,
which is initially unknown to any other node. Let s2 =

PN
i=1

wi,
and let s1 be the sum of wj ’s where by the end of the protocol’s
execution, node j has not failed or been disconnected from the root
due to other nodes’ failures. Following the same definitions from
[5], a zero-error result of SUM is any s where s1 ≤ s ≤ s2, and
an (ǫ, δ)-approximate result of SUM is any ŝ such that for some
zero-error result s, Pr[|ŝ − s| ≥ ǫs] ≤ δ.

Time complexity of SUM protocols. We will consider only public-
coin randomized protocols. By default, a “randomized protocol” in
this paper is a public-coin randomized protocol. For a randomized
SUM protocol and with respect to a topology G, we define the pro-
tocol’s time complexity under G to be the number of rounds needed
for the protocol to terminate, under the worst-case values of the
nodes in G, the worst-case failures (for fault-tolerant cases), and
the worst-case random coin flips in the protocol. The topology G
has a large impact on time complexity, and we use the notion of
aggregation rounds to isolate such impact. We will describe the
time complexity in terms of aggregation rounds. This is analogous
to describing it as a multiple of, for example, the diameter of G.

In failure-free settings, an aggregation round in G consists of
Λ(G) rounds, where Λ(G) is a function of the connected graph G.
We will define Λ(G) precisely later in Section 3, which describes
a simple deterministic tree-aggregation protocol and then defines
Λ(G) as the number of rounds needed for that protocol to finish on
G. When failures are possible, the network topology may change
during execution. Let G be the set of all topologies that have ever
appeared during the given execution. Note that a G′ ∈ G may or
may not be connected. For any such G′ that is not connected, we
define Λ(G′) to be Λ(G′′) where G′′ is the connected component
of G′ that contains the root. To allow a fair comparison between
NFT and FT communication complexity, we define an aggregation

round in an execution with failures to be maxG′∈G Λ(G′) rounds.
This implies that an aggregation round for an FT protocol is either
the same or longer than that for an NFT protocol, which makes our
gap results stronger.

NFT and FT communication complexity of SUM protocols. Clas-
sic multi-party communication complexity problems [24] usually
consider the total number of bits sent by all players, since they
usually use the whiteboard model where the whiteboard is the bot-
tleneck. In our distributed computing setting with a topology G, as
in other problems in such a setting, it is more natural to consider
the number of bits sent by the bottleneck player. Given a random-
ized SUM protocol, a topology G, a value assignment to the nodes
in G, and a failure adversary (if failures are considered), define ai

to be the expected (with the expectation taken over coin flips in the
protocol) number of bits that node i sends. The protocol’s average-

case communication complexity under G is defined as the largest
ai, across all value assignments of the nodes in G, all failure ad-
versaries (if failures are considered), and all i’s (1 ≤ i ≤ N). The
protocol’s worst-case communication complexity under G is simi-
larly defined by considering worst-case coin flips instead of taking
the expectation over the coin flips.

We define Rsyn
0 (SUM, G, b) (Rsyn

ǫ,δ (SUM, G, b), respectively)
to be the smallest average-case (worst-case, respectively) commu-
nication complexity under G across all randomized SUM proto-
cols that can generate, in a failure-free setting, a zero-error re-
sult ((ǫ, δ)-approximate result, respectively) on G within a time
complexity of at most b aggregation rounds. Here note that i) the
length of an aggregation round depends on G, and ii) using the

worst-case communication complexity for defining Rsyn
ǫ,δ is stan-

dard practice [4, 24]. With respect to any topology G, we simi-

larly define Rsyn,ft
0 (SUM, G, b) and Rsyn,ft

ǫ,δ (SUM, G, b) across all
fault-tolerant randomized SUM protocols.

For any given integer N , we define SUM’s NFT communica-

tion complexity Rsyn
0 (SUMN , b) and Rsyn

ǫ,δ (SUMN , b) to be the

maximum Rsyn
0 (SUM, G, b) and Rsyn

ǫ,δ (SUM, G, b), respectively,
across all topology G’s where G has exactly N nodes. Similarly

define SUM’s FT communication complexity Rsyn,ft
0 (SUMN , b)

and Rsyn,ft
ǫ,δ (SUMN , b).

Communication complexity of two-party problems. Our proofs
will also need to reason about the NFT communication complexity
of some two-party problems. In such a problem Π, Alice and Bob
each have an input X and Y respectively, and the goal is to compute
the function Π(X,Y). For all two-party problems in this paper, we
only require Alice to learn the final result. We will often use n to
denote the size of Π, as compared to N which describes the num-
ber of nodes in G. The communication complexity of a randomized
protocol for computing Π is defined to be either the average-case
or worst-case (over random coin flips) number of bits sent by Al-
ice and Bob combined. Different from the classic setting [24] for
two-party problems, we will need to consider a setting with syn-
chronous rounds3, adapted from [19]. Here Alice and Bob proceed
in synchronous rounds, where in each round Alice and Bob may
simultaneously send a message to the other party. Alice, or Bob, or
both may also choose not to send a message in a round. The time

complexity of a randomized protocol for computing Π is defined
to be the number of rounds needed for the protocol to terminate,
over the worst-case input and the worst-case coin flips. We define

Rsyn
0 (Π, t) (Rsyn

ǫ,δ (Π, t), respectively) to be the smallest average-
case (worst-case, respectively) communication complexity across
all randomized protocols for Π that can generate a zero-error result
((ǫ, δ)-approximate result, respectively) within a time complexity
of at most t rounds.

3. UPPER BOUNDS ON NFT COMMUNI-

CATION COMPLEXITY OF SUM
This section describes the NFT upper bounds on SUM, which

are from well-known tree-aggregation protocols coupled with some
standard tricks. These are not our main contribution — instead,
they serve to show the exponential gap from our FT lower bounds.

3These synchronous rounds are different from interaction rounds,
which correspond to message exchanges. A protocol using x syn-
chronous rounds incurs x or fewer interaction rounds since a syn-
chronous round may or may not have any message.

Tree-aggregation protocol and defining Λ(G). Since the topol-
ogy G is known, every node can locally and deterministically con-
struct a breadth-first spanning tree (with the root of G being the
tree root) as the aggregation tree. With this tree in place, a node be-
comes ready when it receives one aggregation message from each
of its children. Each aggregation message encodes the partial sum

of all the values in the corresponding subtree. Leaf nodes are ready

from the beginning. A ready node will combine all these aggrega-
tion messages, together with its own value, and then send a single
aggregation message to its parent. With the known topology, the
protocol easily avoids collision via the following simple determin-
istic scheduling: Out of all ready nodes, the protocol greedily and
deterministically chooses a maximal set of nodes to send messages
without incurring collision. A message does not need to include the
sender’s id — since everything is deterministic, the receiver can lo-
cally determine the sender. The function Λ(G) is formally defined
to be the number of rounds needed for the above deterministic pro-
tocol to finish on G. Thus by definition, the above protocol has a
time complexity of one aggregation round.

NFT upper bounds. If each aggregation message uses O(log N)
bits to encode the exact partial sum, then the above protocol is
a deterministic protocol for SUM with O(log N) communication
complexity and one aggregation round time complexity. For (ǫ, δ)-
approximate results, it is possible to reduce the size of the aggrega-
tion message to O(log 1

ǫ
+ log log N) bits, using a simple private-

coin protocol with similar tricks as in AMS synopsis [1] (see our
technical report [11]). One can further reduce the communication
complexity if the time complexity is b aggregation rounds with
b > 1, since we can now spend b rounds in sending all the bits
previously sent in one round. It is known [19] that an a-bit mes-
sage sent in one round can be encoded using a/ log b

a
bits sent over

b rounds, for b ≥ 2a. To do so, one bit is sent every b
a
· log b

a
rounds. Leveraging the round number during which the bit is sent,
each such bit can encode log(b

a
· log b

a
) ≥ log b

a
bits of informa-

tion. Combining all the above leads to:

THEOREM 1. For any b ≥ 1, we have Rsyn
0 (SUMN , b) =

O(a/ log(b
a

+ 2)) where a = log N , and Rsyn
ǫ, 1

3

(SUMN , b) =

O(a/ log(b
a

+ 2)) where a = log 1

ǫ
+ log log N .

4. LOWER BOUNDS ON FT COMMUNICA-

TION COMPLEXITY OF SUM FOR b ≤
2 − c

The UNIONSIZE problem. In the two-party problem UNIONSIZEn,
Alice and Bob have length-n binary strings X and Y , respectively.
Let Xi (Yi) denote the ith bit of X (Y). Alice aims to deter-
mine |{i | Xi 6= 0 or Yi 6= 0}|. If X and Y are the charac-
teristic vectors of two sets, then this is the size of the union of
the two sets. Trivially combining a few recent results [9, 19, 29]

tells us that Rsyn
0 (UNIONSIZEn, O(poly(n))) = Ω(n

log n
) and

Rsyn
ǫ, 1

3

(UNIONSIZEn, O(poly(n))) = Ω(1

ǫ2 log n
) for ǫ ≥ 1√

n
[11].

Overview of our reduction and its novelty. While the well-known
reduction [29] from UNIONSIZE to the (centralized) one-pass dis-
tinct element counting problem is almost trivial, we seek a reduc-
tion from UNIONSIZE to SUM, which is less obvious. In particular,
it is not immediately clear what a role failures can play. Our sim-
ple yet interesting reduction here will answer this question, which
prepares for our trickier reduction in Section 5. Our reduction is
based on a certain topology G. Given inputs X and Y to UNION-
SIZE, each node in G has some value so that their sum is exactly

. . . .

.

. . . .

. . .

. . .

flaky nodes

binary
tree
with
leaves

n

perfect
binary
tree
with
leaves

n

perfect

τi

α β

γ
β
iγα

i

chainsn

nodes3logn nodes3logn
valued nodes

Figure 2: FT lower bound topology for b ≤ 10

9
.

UNIONSIZE(X,Y). The values of some of the nodes are uniquely
determined by X, and thus are known by Alice from her local
knowledge of X. If the value of a node τ cannot be uniquely de-
termined by X, then τ is spoiled for Alice, in the sense that Alice
cannot simulate τ . (See the formal framework established in our
technical report [11] for the rigorous definition of a spoiled node.)
As the simulation proceeds, a spoiled node τ may causally affect
its neighbor node τ ′, rendering Alice unable to simulate τ ′ and thus
making τ ′ spoiled as well. Since the SUM protocol may have in-
ternal state, if Alice cannot simulate a node for some round, then
Alice cannot simulate the node for later rounds either. In this sense,
a spoiled node can never get “unspoiled” later. For each round, Al-
ice will simply simulate the (shrinking) group of all those nodes
that have not been spoiled for Alice. Bob similarly simulates all
unspoiled nodes for Bob. Alice’s group and Bob’s may intersect.

We want the root of G to remain unspoiled for Alice when the
SUM protocol ends, so that it provides the SUM result to Alice for
her to determine UNIONSIZE(X,Y). To achieve this, in the reduc-
tion, Alice and Bob will need to strategically simulate the failures
of certain nodes, to block the spreading of spoiled nodes. This
showcases the fundamental role of failures in our reduction. At
the same time, we need to avoid failing/disconnecting nodes with
a value of 1 — failing/disconnecting them would enable the SUM

protocol to ignore their values and potentially return a result that
cannot be used to determine UNIONSIZE(X,Y). (Recall from Sec-
tion 2 that a zero-error result for SUM can be any value between s1

and s2.) In fact, if we were not concerned with this, then simply
failing all nodes except the root would keep the root unspoiled for-
ever. Finally, it is also necessary to enlist help from Bob, who can
simulate certain nodes that are spoiled for Alice. By forwarding
to Alice messages sent by those nodes, Bob can further hinder the
shrinking of Alice’s group. The communication (between Alice
and Bob) spent in doing so will be the communication complexity
incurred for solving UNIONSIZE. Simulating a shrinking group of
nodes and properly using failures to hinder such shrinking is the
main novelty in our simple reduction.

Reducing from UNIONSIZE to SUM. For better understanding, the
topology (Figure 2) we describe here works for b ≤ 10

9
. See our

technical report [11] for the topology for b ≤ 2−c, with the c there
being any positive constant. Given UNIONSIZEn with n being a
power of 2, the topology here has n parallel chains of nodes. Each
chain has 6 log n + 1 nodes. We use γα

i , τi, and γβ
i to denote the

first, middle, and last node on the ith chain, respectively. Next we
construct a perfect binary tree with all the γα

i ’s being the leaves,
and let node α denote the tree root. Similarly construct a second
perfect binary tree whose leaves are all the γβ

i ’s, and let β be the
tree root. Finally, we connect α and β with a single edge, and

. . . .
0
1

1
1

1

.

. . . .

0

.

.

0

0

1

Bob's
input Y

Alice's

0

1

1

input X

τiγα
i γ

β
i

t0

t0

t0

t0

Figure 3: Values of valued nodes and failure times of flaky

nodes, for X = 0011 and Y = 0101.

let α be the root of the topology. This topology has total N =
Θ(n log n) nodes.

The inputs X and Y to UNIONSIZEn will determine the values
of the τi’s, which are called valued nodes. Specifically, τi has a
binary value of 1 iff Xi 6= 0 or Yi 6= 0 (Figure 3). All other nodes
(i.e. non-valued nodes) have values of 0. X and Y also determine
the failure times of the γα

i ’s and γβ
i ’s, which are called flaky nodes.

If Xi = 0, then γα
i fails at the beginning of round t0 = 3 log n+1.

Otherwise it never fails. Intuitively, t0 is the very first round where
τi may causally affect γα

i . Similarly, γβ
i fails at the beginning of

round t0 iff Yi = 0 (Figure 3). Non-flaky nodes never fail. It is
worth noting that this failure adversary i) is oblivious to the SUM

protocol, and ii) fails only a vanishingly small fraction (i.e., o(N))
of all the nodes in G.

As a key property in the above construction (and later construc-
tions), a τi whose value is 1 is never disconnected from the root.
This is because if τi’s value is 1, then it must be unspoiled (by
our construction) for either Alice or Bob, and thus can remain con-
nected to α or β (and thus to the root). This in turn ensures that a
zero-error result of SUM is always exactly UNIONSIZE(X,Y).

Alice will simulate the shrinking group of all the unspoiled nodes
for Alice, which always contains node α. Bob similarly simulates
the unspoiled nodes for Bob, including node β. (These two groups
are made precise in our technical report [11].) Whenever α in the
SUM protocol sends a message (whose intended recipient may or
may not be β) Alice always forwards that message to Bob. Bob
does the same whenever β sends a message. Alice and Bob do not
exchange any additional messages. Thus the number of bits sent by
Alice and Bob for solving UNIONSIZE is exactly the same as the
number of the bits sent by α and β in the SUM protocol.

To obtain some intuition, let us consider some i where Xi = 0
and Yi = 1. This makes τi spoiled for Alice, since Alice cannot de-
termine τi’s value based on Xi. To prevent τi from causally affect-
ing α and thus spoiling α, Alice simulates the failure of γα

i before
this can happen. Interestingly, since based on Yi Bob cannot deter-
mine whether γα

i fails, γα
i becomes spoiled for Bob when it fails.

Once the failure of γα
i can causally affect β (at round 10 log n+1),

Bob can no longer simulate β. The simulation must end before this
happens, which is guaranteed under b ≤ 10

9
since an aggregation

round here has no more than 8 log n + 1 rounds.
We obtain the following theorem by formalizing the above argu-

ments, using an improved topology as in our technical report [11],
and then trivially extending to those N values that currently do not
map to any integer n for UNIONSIZEn. The proof is in [11].

THEOREM 2. For any b ∈ [1, 2 − c] where c is any positive

constant, we have Rsyn,ft
0 (SUMN , b) = Ω

“

N
log2 N

”

and

Rsyn,ft
ǫ, 1

3

(SUMN , b) = Ω
“

1

ǫ2 log N

”

for ǫ ≥
√

9 log N√
cN

.

0

1

1

1

.

. . . .

0

. . . .

.

.

0

0

1

Bob's
input Y

Alice's

0

1

input X

1

1

γα
i τi

newly

simulated

failures

by Alice

newly

simulated

failures

by Bob

γ
β
i

t0

t0

t0

t0

Figure 4: Why the construction from Section 4 cannot be extended to larger b.

3

2

1

0

3

2

1

0

Xi Yi

Figure 5: The cycle promise for

q = 4.

chains

.

.

. . .

. . .

flaky nodes

valued nodes
nodes nodesn−1 n−1

n

α β

τiσ
β
i σα

i
γα
i γ

β
i

Figure 6: FT lower bound topology for b ≤ N0.25−c or b ≤
1

ǫ0.5−c .

5. LOWER BOUNDS ON FT COMMUNICA-

TION COMPLEXITY OF SUM FOR b ≤
N0.25−c OR 1/ǫ0.5−c

Why the previous construction cannot be extended. The FT
lower bounds in the previous section no longer hold for larger b
since the failure of γα

i (as simulated by Alice) makes γα
i spoiled

for Bob, which will in turn spoil β under larger b. A natural at-
tempt to fix this is to inject new failures to prevent such propaga-
tion of spoiled nodes, as in Figure 4. Here when Yi = 1, Bob
simulates a new failure to the left of τi, to prevent the propagation
of spoiled nodes due to γα

i . This new failure cannot be to the right
of τi because otherwise when Xi = 0 (implying the failure of γα

i)
and Yi = 1, τi has a value of 1 and is disconnected from the root.
As explained in Section 4, this prevents us from using the SUM re-
sult to determine UNIONSIZE. Similarly, Alice needs to simulate a
new failure on the right side of τi, when Xi = 1. This eventually
implies that when Xi = Yi = 1, both of these two new failures
will be introduced, again disconnecting τi. One could avoid this
problem by adding a promise and disallowing Xi and Yi to simul-
taneously be 1. Unfortunately, such a naive promise decreases the
communication complexity of UNIONSIZEn to O(log n), making
the final results trivial.

The UNIONSIZECP problem. To overcome the above problem,
we will introduce and reduce from a new two-party communica-
tion complexity problem called UNIONSIZECP. UNIONSIZECP is
intuitively UNIONSIZE extended with a novel promise which we
call the cycle promise. This promise is not constructed ad hoc —
rather, we will later see that it can be derived. In UNIONSIZECPn,q

where q ≥ 2, Alice and Bob respectively have length-n strings X
and Y . The characters in the strings are integers in [0, q − 1]. Let
Xi and Yi denote the ith character of X and Y , respectively. X and
Y satisfy the following cycle promise where for all i: If Xi = 0,

. . . .

.

. . . .

.

.

.

Alice's
input X

Bob's
input Y

0 0
0 1
2
2 3
1 2

1

1

1

0

1

1

t0

τiσ
β
i σα

i
γ
β
i

γα
i

t2t1

t1

t1

t3

t0

t0

t2

t2

Figure 7: Values of valued nodes and failure times of flaky

nodes, for q = 4, X = 00221, and Y = 01132.

then Yi must be 0 or 1; if Xi = q−1, then Yi must be q−2 or q−1;
if 0 < Xi < q−1, then Yi must be Xi−1 or Xi +1. This promise
is illustrated in Figure 5 as a bipartite promise graph, where values
for Xi and Yi are vertices and two values are connected by an edge
if they satisfy the promise. Note that this promise graph is actu-
ally a cycle. Same as in UNIONSIZE, the goal in UNIONSIZECP
is for Alice to determine |{i | Xi 6= 0 or Yi 6= 0}|. When q = 2,
UNIONSIZECP degrades to UNIONSIZE. Later we will show that
different from the earlier naive promise, the cycle promise does
not make the communication complexity of UNIONSIZECP trivial.
In our reduction to SUM, the cycle promise will enable us to con-
tinuously introduce new failures to block the spreading of spoiled
nodes caused by old failures, without disconnecting any node in G
with a value of 1. Those newly failed nodes then become spoiled
themselves, requiring further failures to be injected, until the end
of the simulation.

Reducing from UNIONSIZECP to SUM. Figure 6 illustrates the
topology used in our reduction from UNIONSIZECPn,q, which has
n parallel chains of nodes, with each chain having 2n + 3 nodes.
We connect the first node of each chain directly to a node α, and the
last node of each chain directly to a node β.4 Finally, we connect
α and β with a single edge, and let α be the root of the topology.
This topology has total N = Θ(n2) nodes. As before, Alice (Bob)
will simulate a continuously shrinking group of nodes including α
(β). As illustrated in Figure 7, the middle node τi of the ith chain
is a valued node whose value is 1 iff Xi 6= 0 or Yi 6= 0. There are
4 flaky nodes on the chain from left to right: the first node of the
chain, the two neighbors of τi, and the last node of the chain. We
use γα

i , σβ
i , σα

i , and γβ
i to denote these 4 nodes, respectively. Let

tj = (j + 1)n + 1 for all 0 ≤ j ≤ q − 1. The flaky node γα
i fails

4Using binary trees will not work here. Consequently, here an ag-
gregation round will contain more rounds than in Section 4, and in
turn each chain needs to have more nodes.

from

AB AB

after

to

before

after 10

Alice's
input X

Bob's
input Y

before before

A

00

B

A

B

2 1

τiσ
β
i σα

i
γα
i γ

β
i

t0t0

t0 t1

t1t2

t0

t0

t0

t0

t1 t2

t2

0

1

1

Figure 8: Failures prevent the spreading of spoiled nodes.

Dashed arrows labeled A (B) indicate the spreading of spoiled

nodes for Alice (Bob).

at the beginning of round tXi
iff Xi is even, while σα

i fails at the

beginning of round tXi
iff Xi is odd (Figure 7). Similarly, γβ

i (σβ
i)

fails at the beginning of round tYi
iff Yi is even (odd). Again, the

failure adversary here is oblivious to the SUM protocol, and fails
only a vanishingly small fraction (i.e., o(N)) of all the nodes in G.

To gain some intuition, consider the example in Figure 8. We
say that a node is an epicenter for Alice’s input X if it is a valued
node (or a flaky node) whose value (or failure time) is not uniquely
determined by X. Similarly define epicenters for Bob’s input Y .
Essentially, an epicenter is the source of the spreading of spoiled
nodes. When Xi = 0, τi is an epicenter for Alice and thus Alice
simulates the failure of γα

i at t0 to block the influence of such τi

(i.e., the top/middle scenario in Figure 8). Next since the failure
of γα

i depends on Xi and is not uniquely determined by Y , the
node γα

i itself now becomes an epicenter for Bob. With the cycle
promise and since Xi = 0, Yi must be 0 or 1. If Yi = 0, then
Bob does not need to be concerned, since Bob has already simu-
lated the failure of γβ

i at t0 and thus blocked the potential influence
of γα

i (i.e., the top scenario). If Yi = 1 however, Bob needs to
simulate the failure of σβ

i at t1 (i.e., the middle scenario) to block

the influence of γα
i . Now σβ

i again, becomes an epicenter for Al-
ice (i.e., the middle/bottom scenario). Given the cycle promise and
since Yi = 1, we must have Xi = 0 or Xi = 2. If Xi = 0, then
Alice has already simulated the failure of γα

i at t0 and has already
blocked the potential influence of σβ

i (i.e., the middle scenario). If
Xi = 2 however, Alice needs to simulate a new failure of γα

i at
t2 (i.e., the bottom scenario). Extending such reasoning can show
that by continuously injecting new failures, we can always manage
to block the spreading of spoiled nodes.

Finally, note that the simulation still cannot continue forever.
Under the cycle promise, it is possible for Xi = Yi = q − 1.
Thus we need the SUM protocol to stop by round tq−1 − 1, since
otherwise at the beginning of round tq−1, Alice and Bob would
simulate failures such that τi (with a value of 1) would be discon-
nected. This means that q needs to be chosen based on the SUM

protocol’s time complexity b: A larger q is needed when b is larger.
Since the communication complexity of UNIONSIZECP depends
on q (as shown next), as expected, our lower bounds here will be
a function of b. We obtain the following theorem via formalizing
the above reduction, using our lower bound later (Theorem 4) from
UNIONSIZECP, and then trivially extending to all N values. See
our technical report [11] for the proof.

THEOREM 3. For any b ≥ 1, we have Rsyn,ft
0 (SUMN , b) =

Ω(
√

N
b2 log N

) and Rsyn,ft
ǫ, 1

5

(SUMN , b) = Ω(1

ǫb2 log N
) for ǫ ≥ 1

4
√

N
.

Communication complexity of UNIONSIZECP. Since UNION-
SIZECP has never been studied, there are no existing results on
its communication complexity. Proving these results is thus also a
contribution of our work, which may be of independent interest. On
the surface, it may appear that the complexity of UNIONSIZECP
should not be very different from that of UNIONSIZE. This first
thought turns out to be incorrect. For q ≤ n, our technical re-
port [11] presents an O(n

q
) upper bound protocol for

Rsyn
0 (UNIONSIZECPn,q , poly(n)), implying that its communica-

tion complexity drops at least linearly with 1

q
. In this protocol,

Alice finds the integer j with the smallest occurrence count in X,
and sends Bob j and the set {i |Xi = j}. This takes O(n

q
log n)

bits in one round, or O(n
q
) bits in poly(n) rounds [19]. Now we

only need to worry about indices not in the set. For those indices,
the promise graph (Figure 5) degrades to a chain, since two edges
are removed from the cycle. This makes the UNIONSIZECP prob-
lem easy to solve after we apply a mapping trick [11]. To lower
bound UNIONSIZECP’s communication complexity, we find that
the cycle promise makes it challenging to apply classic arguments
based on rectangles [24].5 But we also find that UNIONSIZECP
is rather amenable to information theoretical arguments [4], which
lead to the following theorem whose proof is in [11]:

THEOREM 4. Rsyn
0 (UNIONSIZECPn,q ,O(poly(n)))=Ω(n

q2 log n
)

and Rsyn
ǫ, 1

5

(UNIONSIZECPn,q,O(poly(n)))=Ω(1

ǫq2 log n
) for ǫ≥ 1√

2n
.

6. THE FUNDAMENTAL ROLES OF CYCLE

PROMISE AND UNIONSIZECP
Our reduction from UNIONSIZECP so far has led to the ex-

ponential gap result for SUM, when b ≤ N0.25−c or 1

ǫ0.5−c for
any positive constant c < 0.25. This restriction on b comes from
the 1

q2 term in the lower bound of the communication complexity

of UNIONSIZECP. Our upper bound on UNIONSIZECP indicates
that such a polynomial dependency on 1

q
is unavoidable because

of the cycle promise. It is thus natural to ask: Can we reduce
from problems without promises? Or can we reduce from prob-
lems with a different promise, to weaken the polynomial depen-
dency on 1

q
to log 1

q
? For any possible oblivious reduction (de-

fined next) from any two-party communication complexity prob-
lem Π to SUM, this section answers these questions in the nega-
tive. Specifically, we prove the completeness of UNIONSIZECP in
the sense that such a Π can always be reduced to UNIONSIZECP
and must have a communication complexity no larger than that of
UNIONSIZECP

N,⌊
√

b/3⌋. Thus any FT lower bound on SUM, ob-

tained in such a way via Π, must contain some polynomial term
of 1

b
. Overcoming this polynomial term in the lower bound might

still be possible, but one would have to resort to methods other than
oblivious reductions from two-party problems. Our proof also (im-
plicitly) shows that the cycle promise can be derived and that the
promise likely plays a fundamental role in reasoning about many
functions beyond SUM.

Reductions and oblivious reductions. Consider any two-party
communication complexity problem Π, where Alice aims to learn
Π(X, Y). In a (general) reduction from Π to SUM, Alice and Bob
are given some black-box oracle fault-tolerant protocol for SUM,
and they are supposed to use this oracle to solve Π with any given
input pair (X, Y). Since the (global) oracle protocol is distributed,

5Leveraging some strong results on the sperner capacity of
the cyclic q-gon [6], we managed to obtain some results on
R0(UNIONSIZECP), but not on Rǫ,δ(UNIONSIZECP).

it will be convenient to imagine that each node in the topology has
its own oracle protocol, and invoking these protocols in a “consis-
tent” fashion will enable the root to produce a meaningful result.

In an oblivious reduction to SUM, there is some fixed topology G
and for each (X, Y) pair, there exists some reference setting spec-
ifying the value and failure time of each node in G. The reference
settings are oblivious to the oracle. As explained in Section 4, a ref-
erence setting here should not fail or disconnect nodes with a value
of 1. The zero-error SUM result in the reference setting should be
the same as Π(X, Y), so we can directly use it for solving Π. The
reduction protocol is required to be oblivious as well. Specifically,
Alice and Bob first pick a (public) random string. Next before in-
voking the oracle and purely based on X (Y), Alice (Bob) decides
for each node in G, exactly up to which round she (he) will invoke
the oracle. Note that to invoke the oracle for a certain round, Al-
ice/Bob needs to invoke the oracle for all previous rounds as well.
Alice (Bob) also decides the (initial) value of each node for which
she (he) will invoke the oracle for at least one round. Requiring Al-
ice and Bob to make these decisions beforehand is the most impor-
tant aspect of oblivious reductions. We define the reference execu-

tion for (X, Y) to be the (global) oracle’s execution under the ref-
erence setting for (X, Y) and under the chosen random string. To
enable the root to generate a meaningful result, we require that the
initial value, incoming messages, and coin flips fed by Alice/Bob
into the oracle protocol on a node be the same as those fed into
that node’s oracle in the reference execution for (X, Y). Further-
more, after a node has failed in the reference execution, Alice/Bob
must not invoke that node’s oracle any more (since that node can no
longer help out). Finally, there are two special nodes α and β in G,
such that Alice and Bob will always invoke the oracle on α and β
(respectively) until the root generates a result. Here α must be the
root of G,6 while β can be any other node. During the reduction,
Alice (Bob) may only send to the other party all those messages
sent by the oracle invocation on node α (β). This allows the estab-
lishment of a simple factor-2 relation between the communication
complexity of Π and SUM.

Our previous reductions from UNIONSIZE and UNIONSIZECP
to SUM are both oblivious reductions. Besides those two specific
instances, the broad class of oblivious reductions further captures
reductions from any two-party problem Π with any promise, using
any topology G with any proper reference settings. We now present
a strong result on the completeness of UNIONSIZECP:

THEOREM 5. Consider any two-party communication complex-

ity problem Π that can be obliviously reduced to SUM for some

topology G with N nodes, with the SUM oracle protocol having a

time complexity of up to b aggregation rounds where b ≥ 12. For

all t ≥ 1, Rsyn
0 (Π, t) ≤ Rsyn

0 (UNIONSIZECP
N,⌊

√
b/3⌋, t) and

Rsyn
ǫ,δ (Π, t) ≤ Rsyn

ǫ,δ (UNIONSIZECP
N,⌊

√
b/3⌋, t).

The full proof is in our technical report [11], and we provide some
intuition here. Let X be Alice’s input domain in Π, and Y be Bob’s.
Let L ⊆ X ×Y be the set of all valid input pairs, given the promise
in Π. If Π has no promise, then L = X × Y . Given (X, Y) ∈ L,
an oblivious reduction has a reference setting specifying the value
of each node in G. For any node τ where τ 6= α and τ 6= β, we
define τ ’s (value) assignment graph to be the bipartite graph where
X ∪ Y are vertices and an edge (X, Y) exists iff (X, Y) ∈ L. In
addition, each edge (X, Y) has a binary label which is the value
of τ in the reference setting for (X, Y). We prove that it is always
possible to partition the vertices in τ ’s assignment graph into 2b′

6This is largely for clarity, and can be relaxed if desired.

no edges labeled 1 between

no edges between

and

0

0
0

no edges between

and

and

X (0)

X (1)

X (2)

X (3)

Y(0)

Y(1)

Y(2)

Y(3)

X (0) Y(0)

X (1) Y(1)

X (2) Y(2)

Figure 9: Example assignment graph for a given node τ and for

b′ = 4. X (0), Y(0), . . . , X (3), and Y(3) are the 8 subsets, which

may have different sizes and different numbers of incidental

edges. All edges without labels indicated have a label of 1.

(where b′ = ⌊
p

b/3⌋ ≥ 2) disjoint subsets with strong properties
as illustrated in Figure 9. Intuitively, this is because otherwise the
reference setting for some input pair would need to have so many
failures in G such that τ (with a value of 1) would be disconnected
from the root. Those failures are needed to ensure that Alice (Bob)
can invoke the oracle on α (β) throughout the execution.

At this point, we already have something close to the cycle promise
— if we view each subset as a super vertex, then all the 2b′ super
vertices form a subgraph of a length-2b′ cycle. It is now possible to
reduce Π to UNIONSIZECPN,b′, by mapping an input X for Π to
an input X ′ for UNIONSIZECP as following: Each τ in G corre-
sponds to a unique i (1 ≤ i ≤ N −2), and X ′

i is set to be the index
of the subset in τ ’s assignment graph to which X belongs. Finally,
X ′

N−1 is set to be the (initial) value of α in the given oblivious re-
duction, which can be obtained purely based on X. X ′

N is set to be
0. The conversion from Y to Y ′ is similar, with Y ′

N−1 = 0 and Y ′
N

being the value of β.

7. LOWER BOUNDS ON FT COMMUNICA-

TION COMPLEXITY OF SUM FOR

ALL b
Our previous FT lower bounds become trivial when b > N0.25

or 1

ǫ0.5 . This section uses a different approach to obtain logarith-
mic FT lower bounds for such b, which is more than exponentially
far away from the corresponding O(1) NFT upper bounds for such
b. We first provide some intuition under a strong gossip assump-

tion. Later we will remove this key assumption, which is the key
technical challenge addressed by our proof.

Under the gossip assumption, the root computes the sum by ex-
plicitly collecting from each node a gossip containing its value. We
will show that to do so, some node will need to send Ω(log N)
messages, and hence Ω(log N) bits even if the gossips can be fully
aggregated/compressed. Here the lower bound topology will be an
N -node clique with one of nodes being the root (Figure 10). Imag-
ine for now that the adversary can fail edges in this topology, and
further there is never more than one node sending messages in a
round. These assumptions can be easily removed [11] once we in-
sert some dummy nodes into each edge. Our adaptive adversary
waits until exactly N−1

2
non-root nodes have sent a message (e.g.,

nodes 1 and 2 in Figure 10). Call these N−1

2
nodes as marked

nodes. The adversary then fails enough edges so that each un-
marked non-root node (e.g., node 3) is paired up with a marked
node (e.g., node 1) and the marked node is the only gateway for
the unmarked node to reach the root. Now each marked nodes has
already sent a message, and yet it has one new gossip (from the

send messages one more message
after node 2 sends

root

node 1

node 4

node 2

node 4

root

initial topology

node 1 node 2

node 4

root

node 1 node 2

 node 3 node 3 node 3

after node 1 and node 2

Figure 10: Example FT lower bound topology for n = 4 and unrestricted b.

corresponding unmarked node) to forward to the root. Next apply
this procedure recursively on these N−1

2
marked nodes, and inject

a second batch of edge failures when exactly N−1

4
of them (e.g.,

node 2) have sent a second message. Continuing this argument can
easily show that for all the gossips to reach the root, some node
needs to send at least log(N − 1) + 1 messages.

The gossip assumption is rather strong. For example, a protocol
may be such that if a node’s value is 0, then the root does not need
to collect a gossip from that node and simply uses 0 as the default
value. It is also possible that node i sends a message to node j iff
node i’s value is 1, and then node j conceptually relays i’s value
to the root, by sending a message to the root iff this value is 0.
Here the root never collects a gossip from node i. A key challenge
in our proof is to properly capture all such possibilities. To do
so, we explore a single-player probing game, and prove a strong
connection between SUM protocols and strategies in this game. We
then prove a lower bound on the probing game, which eventually
leads to the following FT lower bounds on SUM. See our technical
report [11] for the proof of the following theorem:

THEOREM 6. For any b ≥ 1, we have Rsyn,ft
0 (SUMN , b) =

Ω(log N) and Rsyn,ft
ǫ, 1

3

(SUMN , b) = Ω(log 1

ǫ
) for ǫ ≥ 1

N
.

8. DISCUSSIONS AND EXTENSIONS
Putting together the NFT upper bounds (Theorem 1) and FT

lower bounds (Theorem 2, 3, and 6) will directly give us the ex-
ponential gaps, as summarized in Figure 1 from Section 1. Specif-
ically, one only needs to apply Theorem 2 for 1 ≤ b ≤ 2 − c,
Theorem 3 for 2− c < b ≤ N0.25−c or 1

ǫ0.5−c , and Theorem 6 for

b > N0.25−c or 1

ǫ0.5−c , with c being any positive constant below
0.25. It is worth noting that such exponential gap results apply as
well to the following extensions of the model defined in Section 2.

Total number of failures. Section 2 allowed the total number of
failures to be up to N − 1. In all the executions (of the SUM proto-
col) considered in our FT lower bound proofs, the failure adversary
actually injects only o(N) failures in G. Thus our lower bounds
apply, without any modification, as long as the total number of fail-
ures is allowed to be up to any constant fraction of N . Our proofs
carry over to even smaller number of failures, without disrupting
the exponential gap, if we lower the degree of our polynomial lower
bounds.

Private-coin and deterministic protocols. Section 2 only consid-
ered public-coin protocols. Private-coin protocols and determinis-
tic protocols are also fully but implicitly covered by all our theo-
rems. This is simply because the NFT upper bound protocol with
zero-error in Theorem 1 is actually deterministic, while the one
with (ǫ, δ)-error uses only private coins.

Allowing integer values for each node. In practice, each node in
the network may have some integer value instead of a binary value.
Our FT lower bounds obviously carry over to integer values. Our
NFT upper bounds continue to apply as long as the integer value
has a domain no larger than some polynomial of N .

Other network models. Because of the paramount practical im-
portance of communication complexity in wireless networks, Sec-
tion 2 chose to define a system model capturing wireless networks.
All our theorems continue to apply regardless of whether collision
is considered (i.e., whether a node can receive messages simul-
taneously from multiple neighbors in a round) and regardless of
whether the communication is point-to-point or (local) broadcast.
Note that in settings without collisions, Λ(G) is simply the eccen-
tricity of the root in G.

Letting all nodes know the result. We required only the root to
learn the final result. To let all nodes know the result, the root in
our upper bound protocol in Theorem 1 can simply broadcast the
result to all nodes along some spanning tree.

Unknown topology. Assuming a known topology, as in Section 2,
strengthens our FT lower bounds. For the upper bounds obtained
via tree-aggregation, with unknown topologies, it suffices to simply
add a distributed pre-processing phase for building a spanning tree.

Defining time complexity over average coin flips. Section 2 de-
fined the time complexity of a protocol to be the number of rounds
needed under the worst-case coin flips. Considering worst-case
coin flips there was largely for clarity, as in the standard practice [4,
24] of using worst-case coin flips for defining randomized non-
zero-error communication complexity. Our technical report [11]
shows that defining time complexity using average-case coin flips
only affects our results slightly, and our exponential gap continues
to hold.

Excluding the communication complexity of the root. Section 2
defined the communication complexity of a SUM protocol to be the
number of bits sent by the bottleneck node. Here it is possible for
the bottleneck node to be the root. In some scenarios, one may
want to exclude the root in this definition. For example, we may be
concerned with communication complexity due to the power con-
sumption of the nodes, while the root node (e.g., a base station)
may not be operating on battery power. Doing so will not affect
any of our theorems, once we extend the lower bound topology by
attaching a new degree-1 node to the old root and letting this new
node be the root [11].

9. CONCLUSIONS AND FUTURE WORK
Tolerating crash failures has been a key focus of distributed com-

puting research from the very beginning. Adding this fault toler-
ance requirement to multi-party communication complexity leads
to the following natural question: “If we want to compute a func-
tion in a fault-tolerant way, what will the communication complex-
ity be?” This paper reveals that the impact of failures on com-
munication complexity can be large, at least for the SUM aggre-
gation function in networks with general topologies. Specifically,
we show that there exists (at least) an exponential gap between the
NFT and FT communication complexity of SUM.

This result attests that FT communication complexity needs to be
studied separately from traditional NFT communication complex-

ity. Since this paper is only the first step along this new direction
of FT communication complexity, as one would imagine, the topic
is rife with interesting open questions such as:

• Our lower bound topologies for SUM are carefully constructed.
We are currently investigating to what extent our lower bounds
can generalize to other topologies.

• We have mainly focused on the exponential gap for SUM, and
have been less concerned about specific degrees of the poly-
nomials in the FT lower bounds. Can we further strengthen
these lower bounds? Note that even our lower bound on the
communication complexity of UNIONSIZECP is not tight
(i.e., roughly 1

q
factor from the upper bound), and thus im-

provement might be possible even there. Similarly, our com-
pleteness result for UNIONSIZECP is for q = Θ(

√
b), while

our reduction actually uses a weaker q = Θ(b).

• Our lower bounds show that the bottleneck node in G will
incur a large communication complexity. How many nodes
in G will incur asymptotically similar communication com-
plexity as that node? Putting it another way, how many hot
spots are there?

• We have defined the FT communication complexity of SUM

across all protocols that can tolerate a certain number of fail-
ures. Similar to the idea of early stopping distributed con-
sensus protocols, among this class of protocols, it would be
interesting to investigate to what extent a protocol can incur a
smaller communication complexity when the number of fail-
ures that actually happen (denoted as f) is small. Repeatedly
invoking tree-aggregation incurs a communication complex-
ity of O(f log N) — can we do better? We are currently
investigating both upper bounds and lower bounds on this.

• Our results extend to some other functions such as SELEC-
TION, via trivial reductions to and from SUM. But clearly
there are also many interesting functions whose FT commu-
nication complexity is still unknown. In particular, can we
characterize the set of functions having exponential gaps?

For answering these questions, we believe that some of the insights
developed in this paper (e.g., on the role of failures in the reduction
and on the cycle promise) can be valuable.

10. ACKNOWLEDGMENTS
We thank Cheng Yeaw Ku and Y. C. Tay for their valuable help

and pointers, and the PODC anonymous reviewers for helpful feed-
backs. This work is partly supported by the research grant for
the Human Sixth Sense Programme at the Advanced Digital Sci-
ences Center from Singapore’s Agency for Science, Technology
and Research (A*STAR), partly supported by the research grant
MOE2011-T2-2-042 “Fault-tolerant Communication Complexity
in Wireless Networks” from Singapore Ministry of Education Aca-
demic Research Fund Tier-2, and partly supported by the Intel Sci-
ence and Technology Center for Cloud Computing (ISTC-CC).

11. REFERENCES

[1] N. Alon, Y. Matias, and M. Szegedy. The space complexity of
approximating the frequency moments. In STOC, May 1996.

[2] O. Ayaso, D. Shah, and M. Dahleh. Information theoretic bounds for
distributed computation over networks of point-to-point channels.
IEEE Transactions on Information Theory, 56(12):6020–6039, 2010.

[3] T. Aysal, M. Yildiz, A. Sarwate, and A. Scaglione. Broadcast gossip
algorithms for consensus. IEEE Transactions on Signal Processing,
57(7):2748–2761, July 2009.

[4] Z. Bar-Yossef, T. S. Jayram, R. Kumar, and D. Sivakumar. An
information statistics approach to data stream and communication
complexity. Journal of Computer and System Sciences,
68(4):702–732, June 2004.

[5] M. Bawa, A. Gionis, H. Garcia-Molina, and R. Motwani. The price
of validity in dynamic networks. Journal of Computer and System

Sciences, 73(3):245–264, May 2007.

[6] A. Blokhuis. On the sperner capacity of the cyclic triangle. Journal

of Algebraic Combinatorics, 2(2):123–124, June 1993.

[7] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah. Randomized gossip
algorithms. IEEE Transactions on Information Theory,
52(6):2508–2530, June 2006.

[8] M. Braverman and A. Rao. Towards coding for maximum errors in
interactive communication. In STOC, June 2011.

[9] A. Chakrabarti and O. Regev. An optimal lower bound on the
communication complexity of gap-hamming-distance. In STOC, June
2011.

[10] A. Chandra, M. Furst, and R. Lipton. Multi-party protocols. In
STOC, April 1983.

[11] B. Chen, H. Yu, Y. Zhao, and P. B. Gibbons. The Cost of Fault
Tolerance in Multi-Party Communication Complexity. Technical
Report TRA5/12, School of Computing, National University of
Singapore, May 2012. Also available at
http://www.comp.nus.edu.sg/~yuhf/TRA5-12.pdf.

[12] J. Chen and G. Pandurangan. Optimal gossip-based aggregate
computation. In SPAA, June 2010.

[13] J. Chen, G. Pandurangan, and D. Xu. Robust computation of
aggregates in wireless sensor networks: Distributed randomized
algorithms and analysis. In IPSN, April 2005.

[14] J. Considine, F. Li, G. Kollios, and J. Byers. Approximate
aggregation techniques for sensor databases. In ICDE, March 2004.

[15] I. Eyal, I. Keidar, and R. Rom. LiMoSense — Live Monitoring in
Dynamic Sensor Networks. In ALGOSENSORS, September 2011.

[16] P. Flajolet and G. N. Martin. Probabilistic counting algorithms for
data base applications. Journal of Computer and System Sciences,
31(2):182–209, September 1985.

[17] A. Giridhar and P. R. Kumar. Towards a theory of in-network
computation in wireless sensor networks. IEEE Communications

Magazine, 44(4):98–107, April 2006.

[18] P. Gupta and P. R. Kumar. The capacity of wireless networks. IEEE

Transactions on Information Theory, 46(2):388–404, March 2000.

[19] R. Impagliazzo and R. Williams. Communication complexity with
synchronized clocks. In CCC, June 2010.

[20] M. Jelasity, A. Montresor, and O. Babaoglu. Gossip-based
aggregation in large dynamic networks. ACM Transactions on

Computer Systems, 23(3):219–252, August 2005.

[21] P. Jesus, C. Baquero, and P. Almeida. Fault-tolerant aggregation by
flow updating. In DAIS, June 2009.

[22] S. Kashyap, S. Deb, K. Naidu, R. Rastogi, and A. Srinivasan.
Efficient gossip-based aggregate computation. In PODS, June 2006.

[23] D. Kempe, A. Dobra, and J. Gehrke. Gossip-based computation of
aggregate information. In FOCS, October 2003.

[24] E. Kushilevitz and N. Nisan. Communication Complexity. Cambridge
University Press, 1996.

[25] D. Mosk-Aoyama and D. Shah. Computing separable functions via
gossip. In PODC, July 2006.

[26] S. Nath, P. Gibbons, S. Seshany, and Z. Anderson. Synopsis diffusion
for robust aggregation in sensor networks. ACM Transactions on

Sensor Networks, 4(2), March 2008.

[27] S. Rajagopalan and L. Schulman. A coding theorem for distributed
computation. In STOC, May 1994.

[28] L. Schulman. Coding for interactive communication. IEEE

Transactions on Information Theory, 42(6):1745–1756, 1996.

[29] D. Woodruff. Optimal space lower bounds for all frequency
moments. In SODA, January 2004.

[30] H. Yu. Secure and highly-available aggregation queries in large-scale
sensor networks via set sampling. Distributed Computing,
23(5):373–394, April 2011.

