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ABSTRACT

Security and privacy are widely recognized as important requirements for access and management of Electronic Health
Record (EHR) data. In this paper we argue that EHR data needs to be managed with customizable access control in
both spatial and temporal dimensions. We present a role-based and time-bound access control model (RBTBAC) that
provides more flexibility in both roles (spatial capability) and time (temporal capability) dimensions to control the access
of sensitive data. Through algorithmic combination of role-based access control and time-bound key management, our
RBTBAC model has two salient features. First, we have developed a privacy-aware and dynamic key structure for role-
based privacy aware access and management of EHR data, focusing on the consistency of access authorization (including
data and time interval) with the activated role of user. In addition to role-based access, a path-invisible EHR structure is
built for preserving privacy of patients. Second, we have employed a time tree method for generating time granule values,
offering fine granularity of time-bound access authorization and control. Our initial experimental results show that tree-
like time structure can improve the performance of the key management scheme significantly and RBTBAC model is more
suitable than existing solutions for EHR data management since it offers high-efficiency and better security and privacy.
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1. INTRODUCTION

Electronic Health Record (EHR) is a digital record shared
across different healthcare settings, by network-connected
enterprise-wide information systems called EHR systems
[1]. On one hand, EHR systems hold the promise to
provide fast and on-demand access to medical documents
and help reduce medical errors and enhance healthcare
quality by providing healthcare workers with decision
support. On the other hand, this openness, while being an
essential feature of EHR, exposes patients to the risks of
privacy disclosure by improper authorization, misuse and
abuse of EHR data. Therefore, security and privacy are
widely recognized as important requirements for access
and management of EHR data. Although regulations such
as HIPAA [2] and the HITECH Act [3] have been
put forward to rule the useage of EHR, but specific
mechanisms are not described.

1.1. Security and Privacy Requirements for EHR
Access

We identify three main requirements for making access
EHR data secure and privacy preserving.

First, when a patient is offered medical treatment, he
expects that his medical records can only be accessed by
authorized doctors, and other unauthorized doctors should
not be able to read any part of his medical records. For
example, the EHR data of a patient must be accessed
by authorized physicians or healthcare professionals when
they have the matching roles or higher levels of roles
in a role hierarchy as shown in Fig.1b. Furthermore, in
role-based EHR data structure as shown in Fig.1a, the
node authorized to physicians should be accessible by
Physician or nodes in lower levels of Physician. Fig.1a
gives an example of role-based hierarchical data structure
for EHR data and Fig.1b shows an example of role
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hierarchy (the detailed explanation of Fig.1 will be given
in Section 3.2). However, some special circumstances may
need more fine-grained access control. For instance, a
hematologist may need to access all blood test results
of a patient, which are nested under different role nodes
(see Fig.1a). Therefore, in an EHR system, we also
need customizability to effectively achieve flexible, fine-
grained, role-based access control over large number of
EHR data.

Second, in the healthcare setting, a physician is allowed
to access the medical data of a specific patient only
during the time period of offering healthcare treatment.
For example, emergency room doctor should not be able to
access any medical document of a patient, once he or she
has completed the emergency treatment of the patient and
the patient has left the emergency room. In addition, given
a patient, different doctors involved should have different
time intervals in terms of accessibility to this patient’s
medical data. Furthermore, a doctor may need to access
the medical data of different patients at the same time
period. Thus, we need to support time-bound access and to
manage the accessibility of EHR data from time dimension
in healthcare domain.

Finally, it is to the best interest of some patients that
their doctor only know the medical data that are relevant to
the diseases currently under treatment by the doctor (such
as dental disease) but should not be able to access other
medical data (such as psychotherapy data). Therefore,
in addition to EHR data, the role-based structure and
indices of EHR data should not be released to users,
since the contents of internal nodes in such structure
may contain sensitive information that can be used by
healthcare professionals to infer other diseases of the
patient. Moreover, the structure of EHR data may change
frequently due to the involvement of different sets of
healthcare providers for different medical conditions and
treatments. Thus, the third challenge in securing EHR
access is to make the structure of EHR data and access
path invisible to users who are unauthorized or only
authorized to access a partial component of the EHR data.
Furthermore, for healthcare settings with untrusted DB,
the indices of EHR data should be invisible too.

In the common setting of access control model,
encryptor decrypts the data retrieved from database before
they are sent to the requester. The secrecy of the
transmitted data is guaranteed by secure transport-level
protocols (such as SSL/TLS) over network. This approach
requires the data need to be decrypted then re-encrypted
before it is transported in the public network. Moreover,
recipients of EHRs obtain the cleartext records and usually
cache them unprotected on the end device, leading to
leakage and insecurity of the data. Thus we consider a
more secure way that encryptor sends the encrypted data
directly. Then data can be decrypted through a client
installed software if the user is legally authorized.

A basic and straightforward approach to deal with above
problems is to encrypt the medical records and update
encryption and decryption keys periodically. Obviously,
this approach is known to increase the cost of the EHR
system, and cannot achieve fine-grained access control.
Furthermore, periodic distribution of decryption keys to
every user of EHR system is unpractical and insecure.

1.2. Our Contributions

In this paper, we propose a general purpose role-based
and time-bound access control (RBTBAC) model for EHR
systems. The development of RBTBAC model is based
on algorithmic combination of role-based access control
and time-bound hierarchical key management such that
a legitimate user of EHR system is authorized a time
interval to access EHR data based on his/her role. The
RBTBAC model offers more flexibility of both roles
(spatial capability) and temporal capability to control the
access of sensitive data. Concretely, we have developed
a privacy-aware and dynamic key structure for role-
based privacy aware access and management of EHR
data, focusing on the consistency of access authorization
(including data and time interval) with the activated
role of user. In addition we have employed a time tree
method for generating time granule values, offering fine
granularity of time-bound access authorization and control.
Through extensive experimentation, we demonstrate that
our RBTBAC model not only offers better security and
privacy for access EHR data, but also provides high
efficiency and customizability.

RBTBAC model is capable of accessing and managing
EHR data, because it provides both structure and time
constraint when a user accesses EHR data with an
activated role. Compared with most existing access control
models, RBTBAC model has three characteristics: role-
based, time-bound and structure-invisible access control
hierarchy.

Roles and role based access are the first characteristics
of the RBTBAC model. Given a care delivery organization,
roles are created for various healthcare functions. The
permission to perform certain healthcare operations is
assigned to specific roles. Similarly, users of EHR system
are assigned permissions through their particular roles.
However, a user can have multiple roles at the same time.
For instance, a doctor is a physician-in-charge for one
patient, and in the mean time he is also a temporary
physician for another patient. In this paper, the concept of
role-based EHR management is composed of role-based
hierarchical data structure, role hierarchy and role-based
access control. These three role-based concepts make up a
role-based access control hierarchy. Specifically, if a user
is granted the access to a node in higher level of a role-
based hierarchical data structure, then he can access all
leaf nodes of the authorized node. For example, if a user
has a role as Physicianh1

1 in Fig.1b, then he is authorized
to access data under the role Physicianh1

1 and the first
two leaf nodes Pres (here pres is the abbreviation for
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Figure 1. EHR data hierarchy and role hierarchy

prescription) and Results in Fig.1a, where Physicianh1
1

refers to the physician1 from hospital h1. If a user has
a role as Physician-in-charge as shown in Fig.1b, then
he can be authorized to access data in node Physician
in the second level in Fig.1a, which means that he can
access all EMR (Electronic Medical Record) data from
all three physicians of Patient1. Note EMR is usually a
component of EHR [4].

The second characteristic of RBTBAC is time-bound
access. The roles in healthcare system have temporal
constraint by time bound such that each healthcare delivery
is only valid for a period of time. Therefore, in EHR
systems, time-bound access means that each user will be
granted a valid time period based on his/her role, and the
user is only allowed to read EHR data of authorized nodes
during the given time period. Once the valid time period
has expired, the user should no longer be able to access the
data.

The third characteristic of RBTBAC is to support a
structure-invisible access hierarchy in the RBTBAC model
for EHR data. The basic idea of structure-invisibility is
that the structure and indices of EHR data should not be
known to the users and the untrusted DB. In addition, the
paths from the granted node to all the leaf nodes should
also be invisible to the user if this user is only authorized
the access right to read the data of leaf nodes. We will
have separate subsections to discuss this issue (see Section
4.1.3 and Section 6.1.5).

Technically, we achieve RBTBAC from following three
dimensions respectively: role-based, time-bound and path-
invisible access structure.

In role-based dimension, we adopt a role-based access
control hierarchy to assign access nodes for users
(doctors). Typically, we use an access credential to bind
one healthcare treatment. That is, for a doctor, one access
credential binds one specific role and a set of EHR data
of a patient. Doctors can access the set of EHR data
by providing an access credential with a specific role.
Furthermore, the process of authorization is under the
control of predetermined access control policy.

In time-bound dimension, we make use of hierarchical
time-bound key management scheme as basic key
generation and distribution scheme. With this approach,
each user is granted a consecutive time interval based on
his role, in which he can generate decryption keys by

himself. On the contrary, user cannot create any decryption
key beyond the granted time interval even he is authorized
to access the data before. Then, we use hierarchical
key structure to manage large number of keys, so that
users can produce multiple temporary decryption keys to
access different parts of EHR data with only one long-
term key. Furthermore, we develop a practical time-bond
key management scheme that maps time granules into a
time tree to provide more efficient computation on time
parameters than most existing key management schemes.

In path-invisible access structure dimension, we encode
all index nodes of EHR data and build an invisible path
for users to access authorized data, so that all users of
EHR system even DB are unaware of EHR data structure.
Therefore, it provides higher level of privacy protection
for patient, and supports various EHR structures and
dynamical updates of EHR data structure.

The rest of this article is organized as follows. In Section
2, we describe current access control models and time-
bound key management approaches, and their limitations.
In Section 3, we give an overview of the RBTBAC model.
In Section 4, we present the enforcement of RBTBAC
model including a role-based key structure and an efficient
tree-like time structure. We present the detailed RBTBAC
protocol in Section 5. Then we discuss security and privacy
of our RBTBAC model in Section 6. In Section 7, we
analyze and compare time and space complexity of our
RBTBAC scheme with existing schemes. Next, we discuss
the related works in Section 8. Finally, we conclude
with notes on future work and other applications of our
proposed technique in Section 9.

2. BACKGROUND AND LIMITATIONS OF
EXISTING APPROACHES

President Barack Obama gave a speech at annual
conference of the American Medical Association in 2009.
The key words are: All that (medical) information should
be stored securely in a private medical record so that your
information can be tracked from one doctor to another-
even if you change jobs, even if you move, even if you
have to see a number of different specialists. Although the
words seem so simple, the ability for clinical institutions
to actually accomplish this is incredibly difficult. The term
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stored securely involves several secure issues to be solved:
data encryption, secure storage, strong authentication,
access control and key management. Also, it contains
issues of actual implementation-searchability, feasibility
and efficiency.

In the healthcare scenario, when multiple users sign in
an EHR system to query records for a specific patient,
the access control component verifies the authorization
of each user first. Then the records are retrieved through
corresponding index information and sent to the user based
on different privilege.

In this section, we provide a brief overview of access
control and time-bound key management and discuss the
limitations of existing works.

2.1. Access Control

In the EHR system, the database storing the composite
EHR is a new paradigm of database outsourcing, called
database-as-a-service (DAS) [5], where an organization’s
database is stored at an external service provider. In
such systems, access control is a very important issue,
especially if the data owner wishes to publish her
data for external use, e.g. patient’s EHR data are used
for group consultation. Access control is in charge of
guaranteeing that each user obtains the correct information
and protecting the sensitive data from revealing to
unauthorized users by identification and authentication. In
the healthcare scenario, it requires more stringent security
and privacy, that is, enforcing rigid mandatory access
control on encrypted EHR data.

Though much work on access control (see 8.1) has
achieved some aims, we find the work on access of
encrypted EHR data is very little. There are several
reasons for this situation. First, the types of medical
records are more than file system (such as X-ray image,
pharmacy, prescription, etc.), and the properties of medical
records are more complex than file system (such as
sensitivity), so that it needs more fine-grained access
control policy. Second, since different patient’s EHR data
are collected from different EHR providers and accessed
by any authorized user (under normal circumstances, the
accessor is not the creator), the selection of encryption
scheme and key generation algorithm are thorny problems.
Third, key management and distribution for different users
is also a hot potato. For instance, how to distribute keys
to every user so that each of them can decrypt the data
authorized by patient, while cannot decrypt any other data
containing sensitive information or not allowed by patient
is very hard.

In our scheme, based on the role of users, each of
them is granted different permission to access encrypted
EHR data within a specific time interval. The user cannot
access those data that the patient does not allow to reveal
to him in the inconvenient time. Compared with existing
diverse access control schemes, our scheme combines role-
based access control with time-bound key management

technique, so that it is capable to enhance the privacy for
patients.

2.2. Time-Bound Key Management

Key management is another important issue which is
closely related to encryption and access control. Key
management schemes are used to provide access control
to data streams for legitimate users. Recall that, in an
EHR system, each piece of record should be encrypted
stored in database and accessed by access control policies.
Every time the use of encryption algorithm, there will
be a corresponding encryption and decryption key pair.
Therefore, how to manage these multiple keys is a big issue
in EHR systems.

For our motivated scenario, we employ time-bound
hierarchical key management scheme to restrict user’s
access on EHR data. Literally, this scheme has two
properties: hierarchy and time-bound. The hierarchy is a
widely used structure for key management [6, 7, 8, 9, 10,
11, 12], which is used to assign cryptographic keys to a
set of partially ordered classes so that the user in a higher
class can derive the cryptographic key for users in a lower
class. Time-bound means each cryptographic key is bound
to current time period by adding time parameters in the
process of key generation. In the healthcare scenario, users
are assigned to access EHR data for only a certain period
of time. Once the time period has expired, user should not
be able to access any record with key if he is not authorized
to do so. Thus, encrypting EHR data when send it to each
user with time-bound key is a good way to tackle above
problems.

In the recent decade for development of time-bound key
management technique, a typical work is proposed by Elisa
Bertino et al. [11]. Their scheme is based on elliptic curve
cryptography and claimed secure against X. Yi’s attack
[13]. In Bertino’scheme, the encryption key Ki,t for class
of node Ci at time granule t ∈ [0, z] is computed by the
formula below:

Ki,t = HK

(
(Ki)Y ⊕Ht(a)⊕Hz−t(b)⊕ CIDi

)
(1)

Where Ki is the class key of class of node Ci, (Ki)Y
is the Y-coordinate of Ki, Ht(c) is the t-fold iteration of
hash function H(·) applied to c, CIDi is the identity of
Ci and ⊕ is the bitwise XOR.

When a user is given a tamper-resistant device
storing HK , Htb(a), Hz−te(b), CIDi and other
parameters, he can derive decryption key Ki,t in time
granule t ∈ [tb, te] with Equation (1) in tamper-resistant
device, where Ht(a) = Ht−tb(Htb(a)), Hz−t(b) =
Hte−t(Hz−te(b)).

However, the security of their scheme is questioned by
Sui [14]. Moreover, the use of tamper-resistant device is
infeasible in EHR system.

In summary, as applied to the EHR system, time-bound
hierarchical key management scheme should be rebuilt to
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Figure 2. RBTBAC model

provide better security, privacy and practicality, so that
it has capability of satisfying the special requirements of
EHR systems.

3. THE RBTBAC MODEL FOR EHR
SYSTEMS

This section discusses related access control model
for EHR infrastructures. We begin with presenting an
RBTBAC model used in role and data hierarchy systems.
Then we give the reference security model for an EHR
system.

3.1. RBTBAC Model

Role-based access control (RBAC) [15] [16] is designed to
simplify security administration by introducing the ’role’
abstraction between principles (subjects) and privileges
(objects). This splits management of the principal to
privilege mapping by splitting it into two parts: a mapping
from user to roles, and a mapping from roles to privileges.
In [17], four RBAC schemes are described. Among them,
flat RBAC is the basic model which simply dictates two
relationships: user-role and role-privilege. Hierarchical
RBAC extends the basic flat RBAC model by adding role
hierarchy. Role hierarchy has an associated constraint that
must be satisfied if a user is to activate the target role based
on their already being active in the source role (the original
role used for creating medical data hierarchy).

Hierarchical RBAC can be used to build our RBTBAC
model since it facilitates the development of powerful
policy schemes in EHR system. We extend the basic
hierarchical RBAC model to RBTBAC model as shown
in Fig.2. An additional mapping from privilege to access
control policy (ACP) with time constraint is added between
roles and permissions, that is, each access permit for a set
of data is bounded by a time interval. The double-headed
arrow in Fig.2 indicates the many-to-many relationship
between the two objects. One user can activate several
different roles, where each role is corresponding to a valid
access time interval of specific data sets. Similarly, one
permit is bounded by number of rules, and one rule can
affect more than one permit.

Compared with hierarchical RBAC, RBTBAC has time
parameters in each access control policy. When TA (trusted
authority) concludes a result by searching access control
policies, it actually not only gives the access permission

to a specific role but also grants a time period for the
authorized access.

3.2. EHR Data Structure and Role Hierarchy

Usually, EHR data are hierarchically clustered. In the
EHR environment, hierarchical structure of EHR data is
required to be flexible and dynamic. Theoretically, there
are two types of hierarchical structure of medical records:
attribute-based structure and role-based structure. Fig.1a is
an example of role-based hierarchical structure of medical
records [4].

As a general rule, patient visits a special doctor for
a specific illness. Therefore, multiple records can be
clustered by the different roles of doctors. We construct
an EHR tree for each patient using Patienti as the root of
EHR tree. For the same patient, say Alice, the same token
is assumed. We can set the initial role based hierarchical
structure of an EHR in terms of hierarchical template as
shown in Fig.1a. The root of the tree is at the top level,
say Level 0. Level 1 is the role nodes of doctors, and
their children nodes are labeled with unique identity of
doctors within each corresponding CDO (Care Delivery
Organization), such as hospital1 and hospital2 in Fig.1a
(Level 2). The nodes in and below Level 3 are medical
diagnosis nodes and other correlative inspection nodes.
Finally, only the leaf nodes contain EHR records, such as
prescriptions and diagnosis and so on. Thus the tree has
two types of nodes: leaf nodes that contain real EHR data
and other nodes of upper levels that are actually indices
for EHR data. Thereby the former are called data nodes
and the latter are called index nodes. For easy retrieval, we
want to sort all child nodes by alphabetical ordering of their
tokens or node IDs from left to right except the diagnosis
nodes in Level 3, where we place diagnosis nodes as the
leftmost child node of their parent node, since they are
more important than other sibling nodes. Obviously in this
structure, all data nodes are nested according to a role
node, so that they can be expediently retrieved by different
roles of doctors.

Role hierarchy is a natural mean for structuring
roles to reflect an organization’s lines of authority
and responsibility, as well as in medical organizations.
An example of role hierarchy corresponding to role-
based hierarchical EHR data is illustrated in Fig.1b.
Mathematically, the role hierarchy is partial order, which
is reflexive, transitive and anti-symmetric relation. By
convention more powerful (or senior) roles are shown
toward the top of role-hierarchy diagram, and less powerful
(or junior) roles toward the bottom. Fig.1b shows that
senior roles aggregate the access permission of junior
roles. Thus Patient1 can get access permission of his/her
own medical records in Fig.1a. Similarly, role Physician-
in-charge acquires the permissions of Physicianh1

1 ,
Physicianh2

1 and Physicianh2
2 , and may have additional

permission of its own to access physician records of
Patient1. This tree-structure hierarchy is good for
aggregation but does not support sharing. In Fig.1b, there
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can be no sharing of medical data between the Physician-
in-charge roles on the left and Surgeon-in-charge roles on
the right.

3.3. Reference Security Model for EHR System

The reference security model mainly has three entities
cooperatively to manage and control the usage of EHR
data in security as shown in Fig.3. The most important
one is the TA (trusted authority) who retains two roles:
encryptor, who is responsible for encrypting various EHR
data from different healthcare providers into ciphertexts
and access control enforcer, who enforces predefined
access control policies. The remote EHR database is a
necessary component to store the encoded composite EHR
data. Additionally, an access control policy engine is the
collector and developer for access control policies under
patient’s control.

The original EHR data of a patient are collected
periodically from repositories of different healthcare
providers. Then encryptor encrypts the various medical
data and uploads the encrypted data to the remote EHR
database. To request access to EHR data of a patient,
user is required two types of credentials: system identity
credential and access credential. When a new user signs
up for EHR system, TA returns a system identity credential
to the user. The system identity credential includes a
unique identity, the original role of the user (which is
used to sign into the EHR system), a user’s master key
(which is used to generate short-term access keys for
subsequent accesses) and some system parameters. With
system identity credential, user can only log into the EHR
system, but cannot access any EHR data even his own
EHR data. To access EHR data of a specific patient,
user sends an access request to TA with his system
identity credential. The request should mainly contain
the patient’s ID, a target role for accessing the requested
data (which is lower or equal to his/her original role in
role hierarchy), the keywords for requested data and an
expected access time period. TA replies permission result
based on the predefined access control policies. Once
the request is consistent to access control policies, TA
authorizes an access credential to the user. An access

credential should include access time period, parameters
used to compute decryption keys of authorized data and
verification information. User can legally query EHR data
from remote database with corresponding access credential
and decrypt the encrypted data in the granted time period.

Here the user is granted access privilege for a set of data
in a specific time period by an access credential. When
there is an access request, database only needs to verify the
system identity credential and access credential rather than
interacting with TA and access control policy repository to
verify the authorization.

3.4. Patient-Controlled RBTBAC Policy

For protecting patient’s privacy, patient should be involved
in the development process of access control policy to
decide which parts of his/her EHR data can be shared with
whom. Here we first give a formal definition of RBTBAC
policy, and then illustrate how the policy works under
patient’s control through some examples.

Definition 3.1 (RBTBAC Policy)
An RBTBAC policy is a tuple acp =
(ro, 〈Patientj , {C}〉 , 〈tb, te, ti〉 , pu, re), where
ro ∈ Ro is the target role of the access requester and
Ro is the set of roles in role hierarchy; 〈Patientj , {C}〉
is a set of EHR data nodes of patient j, which can be
selected as target objects; 〈tb, te, ti〉 is a set of time
parameters for the user accessing requested data: tb is the
start time of the requested time interval, te is the end time
of the requested time interval, and ti ∈ TI is the longest
time interval for valid access on selected data; pu ∈
{treatment, research, payment, default} indicates
the purposes of user access; re ∈ {permit, deny} is the
authorization result of current request.

Example 3.2
Using Definition 3.1, Fig.1b as role hierarchy and Fig.1a
as corresponding EHR data structure, the following access
control policies can be articulated:

acp1: (Patient1, 〈Patient1, Patient1〉, default,
default, permit);

acp2: (surgeonh1 ,
〈
Patient1, surgeon

h1
〉
,

〈tb, te, twoweeks〉, treatment, permit);
acp3: (physician-in-charge,

〈
Patient1, surgeon

h1
〉
,

〈tb, 12 : 00am, oneday〉, treatment, deny).

In acp1, the patient is allowed to read all his/her own
EHR data at any time. Inferred from acp 2, a user with
role surgeonh1 is allowed to read the EHR data nested
under the node Surgeonh1 of Patient1 in Fig.1a when he
offers healthcare treatment for Patient1, which starts at
tb and ends at te. The longest valid time interval for access
those EHR data is two weeks. While in acp 3, the request
that user with role physician-in-charge accesses EHR data
under the node Surgeonh1 in the day will be denied.

Note that, in most cases, time interval from tb to te
(namely, the value of te − tb + 1) depends on the time
interval of offering healthcare treatment and is not equal to
ti. If (te − tb + 1) < ti, then the valid access time interval
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should subject to te; otherwise, the access time interval
should end at tb + ti. In the latter case, the user should re-
request access permission for the rest time interval. Using
acp 3 as an example, no matter when the access right is
authorized to user, after the midnight of the day the user
can not access the data anymore. Here we need to point
out that once EHR data have been created, they should be
read-only.

4. ENFORCEMENT OF RBTBAC MODEL

So far we have discussed our RBTBAC in model terms.
In this section, we give technical details for enforcing our
RBTBAC model.

In an RBTBAC model, the key technical issue is
generation of access key, so that users can access different
pieces of EHR data in different time intervals. In this
paper, the key generation and distribution scheme is
called RBTB key management scheme. Since the algorithm
used to encrypt and decrypt EHR data is symmetric
cryptographic algorithm, decryption key is identical to
encryption key, namely access key mentioned in Section
5.2. The algorithm for generating an access key Kk,t is
parameterized with two numbers: a long-term class (node)
key Kk for class node Ck and a time granule value VB(t).
This section focuses on computation of the two primary
parameters. We first discuss the role-based key structures
of RBTB key management scheme, and then put forward
an efficient method, time tree, for computing time granule
values.

4.1. Role-Based Key Structures

As mentioned before, a user may have several different
roles, so he may need to have multiple keys to access
different pieces of EHR data. The ideal situation would
be that a user can decrypt multiple parts of EHR data
with the smallest number of keys. To achieve this goal,
we let each user efficiently produce multiple access
keys by themselves with only one long-term master
key. Technically, we first construct a static hierarchical
encryption key structure, and then dynamically establish
a hierarchical decryption key structure.

4.1.1. Encryption and Decryption Key Structures
Role-based key structure provides a way of integrating

access control in the key distribution phase in a manner that
facilitates generating access keys for different data nodes.

Definition 4.1 (Security Class)
A security class is a set of EHR data that share common
searchability access privileges. That is, all EHR data
contained within a security class can be accessed and
searched by the same authorized user.

Suppose that there are totally n doctors and m
patients in an EHR system. Consider key tree as Fig.4a,
the partially ordered set 〈C,�〉, where the vertices are

C = {C0, CP1 , · · · , CPm , C1, C2, · · · , CN}, where each
vertex is a security class and diagramed with a node in
the hierarchical tree. If Ci � Cj , we say security class
Ci is subordinate to security class Cj (or security class
Cj is superordinate to security class Ci). Ci ≺ Cj means
that Ci � Cj and Ci 6= Cj . If Ci ≺ Cj and there is no
Cx such that Ci ≺ Cx ≺ Cj , we say Ci is immediate
subordinate to Cj (or Cj is immediate superordinate to
Ci), which denoted by Ci ≺d Cj and labeled by a directed
edge between the two security classes in the tree.

To encrypt EHR data in each security class, encryptor
first establishes encryption key tree as shown in Fig.4a.
Without loss of generality, let C0 be the root of the tree.
Correspondingly, K0 is the system root key used to encrypt
the data in class C0. The nodes in the second level are
called patient nodes which is a token of the patient. All
the EHR data of the patient are nested under the matching
patient node. Therefore the corresponding key is called
patient master key KPj (j = 1, 2, · · · ,m), which can be
distributed to patient j, so that the patient can derive keys
of lower level when given access right. For example, the
key KP1 is related to node P1, which is also the root node
in Fig.1a. That means the subtree rooted with KPj (1 ≤
j ≤ m) is isomorphic to the tree of EHR data of patient
j. Similarly, the keys in lower levels are encryption keys
used to encrypt data in homologous classes in the tree of
EHR data (see Fig.1a). Note again, in this key tree, only
the keys in leaf nodes are used to encrypt real EHR data.
In summary, the keys in lower level classes can be derived
from the keys in higher level classes, whenever they are
partial ordered, which means there exists a path between
these two security classes in the tree.

The decryption key structure is slightly different than
the encryption key structure. Consider the situation where
Fig.4a is used as the decryption key structure: a doctor is
required to have more than one decryption key to access
EHR data of different patients. To avoid the inconvenience
and added security risks that come with the distribution of
many keys, we dynamically add doctor nodes between root
node and patient nodes as shown in Fig.4b. The key related
to a doctor node is called doctor master key KDi(i =
1, 2, · · · , n). It is bound with a doctor’s ID and assigned
to the corresponding doctor. Therefore, doctor can use the
unique master key to produce multiple keys to access EHR
data of different patients. Here the ’dynamically’ means
the relationship between doctor node and patient node is
not static. According to the description of Section 3.3,
it is established only when a doctor is issued an access
credential. Moreover, it can be deleted once the valid
access time interval has expired.

4.1.2. Computation of Class Key
The class keys are relative static and have two

roles: encrypting index nodes and computing access
(encryption/decryption) keys for data nodes.

Let G be a cyclic group of prime order q (with ‖q‖ =
n′, where n′ is the security parameter), and let g be a
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Figure 4. Hierarchical key structure for encrypting and decrypting EHR data

generator of G. H ′ : {0, 1}∗ → G is a secret collision-
resistant hash function. IV is a random initial value. Pj ,
Di and CIDx represent identities of patient j, doctor
i and security class Cx respectively. Relationship value
RCx,Cy between two partial ordered classes Cy ≺ Cx can
be calculated by Equation (2).

RCx,Cy = g[H
′(CIDy)−H′(CIDx)]mod q (2)

Then class key Ky for security class Cy can be
computed with Equation (3).

Ky = gH
′(CIDy) = Kx ·RCx,Cy

= gH
′(CIDx) · gH

′(CIDy)−H′(CIDx)
(3)

Concretely, for encryption key structure (Fig. 4a),
encryptor computes class keys for each type of security
classes as follows:

• Root node (C0): K0 = gH
′(IV )

• Patient node (CPj ): KPj = gH
′(Pj) =

K0 ·RC0,CPj
= gH

′(IV ) · gH
′(Pj)−H′(IV );

• Index node (Cx): Kx = gH
′(CIDx) =

KPj ·RCPj
,Cx = gH

′(Pj) · gH
′(CIDx)−H′(Pj);

• Data node (Ck): Kk = gH
′(CIDk) = Kx ·

RCx,Ck = gH
′(CIDx) · gH

′(CIDk)−H′(CIDx).

For decryption key structure (Fig.4b), a doctor node
is added between root node and patient node when a
docotor is issued an access credential. The doctor master
key is computed with KDi = gH

′(Di) = K0 ·RC0,CDi

and distributed to user Di. When user Di queries EHR
data of security class Ck of patient j, the relationship value
RCDi

,Ck is computed and sent to user Di as well as other
parameters through an access credential. Consequently,
user Di can derive class key Kk with his master key KDi

and given value RCDi
,Ck by himself through Equation (4).

Kk = KDi ·RCDi
,Ck (4)

Correctness. Suppose partial order Ck ≺d Cx ≺d

CPj ≺d CDi ≺d C0 in the decryption key structure, user
Di can correctly compute class key Kk for security class
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Ck by given RCDi
,Ck and KDi , because the following

equation holds.

Kk = Kx ·RCx,Ck = KPj ·RCPj
,Cx ·RCx,Ck

= KDi ·RCDi
,CPj

·RCPj
,Cx ·RCx,Ck = KDi ·RCDi

,Ck

Security. Based on the condition that H ′ is only known
to encryptor, the security of class key generation is based
on the discrete logarithm problem in a cyclic group G
of prime order q with given generator g [18]. That is,
user Di is unable to compute logg KDi given a random
element KDi ∈ G. The randomness of KDi is ensured
by the secret collision-resistant hash function H ′ and the
randomness of its inputs. Similarly, for other class keys and
relationship values, we have the same security conclusions.
In addition, each of user’s master keys should be secretly
kept by its owner and other class keys for index nodes
are securely stored by encryptor. Once a class key is
exposed, it should be revoked and recreated with new
identity (except the class keys of data nodes: they can be
computed by users through authorization).

4.1.3. Path Invisible Access Structure
In the EHR system, both EHR data and the indices

to that data can reveal part of the patient’s sensitive
information. For this reason, we highly suggest the
indices of EHR data, namely the index nodes of EHR
data structure should be encrypted too. In our RBTBAC
scheme, they are encrypted by corresponding class keys.
Thus, users can not obtain any other information about the
patient except the EHR data authorized to him, that is, an
invisible access path is build for users.

Specifically, when a user is authorized to access
EHR data of security class Ck, he is only given the
relationship vlaue RCDi

,Ck through the access credential.
Then the user computes Kk with Equation (4) without
any intermediate index node involved in the process of
calculation. It can be inferred from above steps that user
is unaware of any index node or of the structure of EHR
data. Therefore, we call the structure with above character
path invisible access structure.

4.2. Time Tree

In this subsection, we introduce a novel method, time tree,
to efficiently compute time granule values.

4.2.1. Definition of Time Tree
We divide time into small granules, which are numbered

as 0, 1, 2, · · · , z, and map these time granules into a
time tree. The time tree can be binary tree or multi-tree
according to the actual situation.

First, we distinctly state the concepts of different time
periods that used in our RBTBAC scheme. The whole time
period is called timeline, which is the longest time unit
involved in this paper. The timeline is divided into uniform
small pieces. Each small time slot is called time granule,

which is the smallest unit of time period. We call several
consecutive time granules time interval which represents
a valid time period for user accessing a set of EHR data.
For example, the timeline is one year and the small time
granule is one day, that means a whole year is divided into
365 days. A user can be granted any consecutive days in
365 days as time interval such as one week or one month
to access EHR data.

Next, we need to define a new concept, time tree, which
is introduced to effectively compute time granule values in
our RBTBAC scheme.

Definition 4.2 (Time Tree)
A time tree is a finite set of time interval values, which
begins at a value of whole timeline as root node. Child
nodes divide time period of parent node into several
smaller consecutive disjoint time intervals. Each leaf node
denotes the smallest time granule value. The value of node
can be computed through the path from root node to itself.

Definition 4.3 (Time Binary Tree)
If the time tree has at most two children for each node, we
call it time binary tree.

Definition 4.4 (Time Multi-Tree)
If the time tree has more than two children for each node,
we call it time multi-tree.

4.2.2. Two Structures of Time Tree
Now we explain how to map time granules into a

Complete Binary Tree (CBT) through an example. Using
Fig.5a as an example, the timeline is divided into eight
small time granules with the binary representation of
000, 001, · · · , 111. For simplicity, let B(t) denote the
binary expression of time granule and VB(t) indicate the
value of time granule t. A star in subscript indicates
intermediate nodes (that is not the root and leaf nodes)
of the time tree. Obviously, the values of smallest time
granules are labeled by leaf nodes of the CBT. Besides,
the value of each node can be calculated through the
path from the root node to itself, where the value of
root node is H(w), H is a one-way hash function and
w is a randomly selected integer. Consequently we have
following equations, where ‖ denotes string concatenation.

V0∗ = H(H(w)‖0), V1∗ = H(H(w)‖1),
V00∗ = H(H(H(w)‖0)‖0) = H(V0∗‖0), · · ·
V111 = H(H(H(H(w)‖1)‖1)‖1) = H(H(V1∗‖1)‖1)
= H(V11∗‖1)

We observe that all time interval [tb, te] ∈ [0, z] can be
composed of a number of Full Binary Subtrees (FBSs),
that is [VB(tb), VB(te)] = FBS[V 1] ∪ FBS[V 2] ∪ · · · ∪
FBS[V u], where FBS[V u] denotes an FBS whose value
of root node is V u and symbol ∪ means the values of leaf
nodes of FBSs (the right side of the equation) compose the
values of time interval from tb to te. For example, time
interval [tb, te] = [0, 5] = [000, 101], which is labeled in
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Figure 5. Two samples of time tree

gray in Fig.5a, contains two FBSs, one is rooted by
node V0∗, the other is rooted by node V10∗. Therefore,
we have following equation: [V000, V101] = FBS[V0∗] ∪
FBS[V10∗].

With the tree structure, any leaf node of an FBS can be
computed through the value of its root node. For example,
V000, V001, V010, V011 can be computed with the value
V0∗ respectively, V100 and V101 can be computed with
the value V10∗. Consequently, time granule values of time
interval [tb, te] = [000, 101] can be computed with the
given values V0∗ and V10∗.

In healthcare domain, time interval of treatment is
usually counted by days, weeks or months. If we define
the smallest time granularity as daily, it is not very
convenient to find right intermediate nodes to compute
each time granule when a doctor is authorized access
time interval weekly or monthly. For above reason, we
consider another time structure called time multi-tree as
shown in Fig.5b. The root node denotes the timeline of
one year. The nodes in the second level are the values of
months expressed by Vmonth∗. For instance, V01∗ means
the value of January and so forth. The third level is divided
by weeks, the expression of time interval values of this
level is Vmonth‖week∗, such as V011∗ expresses the time
interval value of the first week of January. The leaf nodes
denote the smallest time granule such as days, the value of
leaf node is expressed by Vmonth‖week‖day . For example,
V0113 denotes the time granule value of Wednesday, the
first week in January. So this multi-tree has 365 leaf
nodes to represent a year. The computation expression
for value of each leaf node is Vmonth‖week‖day =
H(H(H(H(w)‖month)‖week)‖day), i.e.
V0113 = H(H(H(H(w)‖01)‖1)‖3) = H(V011∗‖3).
With time multi-tree, doctors can be assigned intermediate
nodes easily when they are given time interval weekly or
monthly in condition that the timeline is a year and the
smallest time granularity is daily or weekly.

However, when a doctor is authorized time interval by
days, like from Monday to Friday, he needs to be given
five time interval values and computes decryption key in
each time granule with time multi-tree. In this situation,
time binary tree is more efficient and flexible than time

multi-tree.

The method of time tree is faster than most existing
time-bound hierarchical key management schemes, since
they use linear hash chain to compute time granule value,
whose time complexity of hashing operation is O(te − tb).
While with binary tree structure, the time complexity of
hashing operation is O(dlog2(te − tb + 1)e). Obviously,
the method of time tree is comparatively efficient for
computing time granule values. The detail analysis and
comparison of time complexity of these two methods will
be given in Section 7.2.

4.2.3. Algorithm for Locating the Roots of FBSs
In the previous sections, we have shown how to

construct a time tree by given timeline [0, z]. However,
there is an unsolved issue: that is, when given a time
interval [tb, te], how to correctly find root nodes of FBSs
in a time tree. Clearly, it is much easier when using time
multi-tree than using time binary tree. In this subsection
we outline a practical algorithm that is able to effectively
locate root nodes of FBSs given any consecutive time
granules [tb, te] ∈ [0, z] of time binary tree.

Algorithm 1 shows the pseudo-code for locating the
root nodes of FBSs. Given time interval [tb, te], the
procedure FindRootOfFBS exposes a set of positions
of FBS roots. Since the given time interval is composed
of consecutive leaf nodes, the algorithm analyzes the
components of time interval from bottom to top. It uses
a structure with two parameters val and pos to represent
the position of a node of time binary tree. In addition, a
variable level is used to indicate the current number of
rounds and initialized by 0. It first allocates two variables
head and end to respectively indicate the beginning and
end of time interval, that is, the value of head is tb and the
value of end is te. If the value of head is odd (or the value
of end is even), then this node is one of the nodes we are
looking for; Otherwise, the value of head is increased by 1
(or the value of end is reduced by 1). Then remove the last
bit of head and end (that is standard right shift of one bit)
and go to the next round (the upper level of the time binary
tree) until the value of head is less than or equal to end.
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ALGORITHM 1: Pseudo-code for locating the roots of FBSs

procedure FindRootOfFBS
level = 0, head = tb, end = te;
while head < end do

if (head mod 2 == 1) then
RootNodes→ elem.val = head;
RootNodes→ elem.pos = level;
RootNodes = RootNodes→ next;
head=head + 1;

end
if (end mod 2 == 0) then

RootNodes→ elem.val = end;
RootNodes→ elem.pos = level + 1;
RootNodes = RootNodes→ next;
end = end− 1;

end
level + +;
head = head >> 1;
end = end >> 1;

end
Print(RootNodes);

Take [tb, te] = [0, 5] = [000, 101] as an example (see
Fig.5a). Initially, the value of head is 0 (000 in binary)
and the value of end is 5 (101 in binary). In the first round
(the value of level is 0), no node is singled out, since the
value of head is even and the the value of end is odd.
Continue to right shift one bit of head and end, the values
of head and end become to 0 (000 in binary) and 2 (010
in binary) respectively, and value of pos increases to 1. In
the second round, since the value of end is even, the first
root node whose val = 2 and pos = 1 is obtained. Then
end reduces to 1. In the third round, after remove the last
bit of head and end, the values of them both become to 0.
The value of end is even again. So the second root node
whose val = 0, pos = 2 (that is, 0 in binary) is located.
The program terminates.

4.3. Rekey

To guarantee the security of EHR system, all keys should
be updated periodically. In our scheme, the access key
Kk,t for security class Ck is changed with current time
granule t. The frequency depends on the size of t, such
as per day or per week. The class keys Ki for generating
access keys and encrypting index nodes are also regularly
renewed by updating initial value IV periodically (such
as per month or per year). Accordingly, all class keys are
changed with IV regularly.

5. IMPLEMENTATION OF RBTBAC
PROTOCOL IN EHR SYSTEM

In this section we present the RBTBAC protocol for
accessing EHR data based on previous RBTBAC model.
The access of EHR data is an interactive process involving
user, EHR system and EHR database. As mentioned in
Section 3.3, to successfully access the encrypted EHR

data, the user should be issued both system identity
credential and access credential for the requested data
set. An RBTBAC protocol is composed of five sub-
protocols: initialization, data encryption, user registration,
user request and access and decryption.

5.1. Initialization

In this phase, system parameters for accessing EHR
data are initialized, all class keys are generated and the
hierarchical encryption key structure is established as
Fig.4a.

1. Encryptor chooses a random integer IV and two
secret keyed HMAC HK(·) and HKx(·), where
K is the system access master key and Kx is the
class key for security class Cx. Then encryptor
runs a polynomial-time group-generating algorithm
G(1n

′
) to generate group G as described in Section

4.1.2 and selects a collision-resistant hash function
H ′ : {0, 1}∗ → G.

2. Encryptor computes class keys of encryption
key structure using the method in Section 4.1.2.
Then encryptor encodes all index nodes with
corresponding class keys, that is, computes the
values of HMAC HKx (Cx) for node Cx as well
as all patient nodes, and updates the secured indices
to DB.

5.2. Data Encryption

Encryptor generates the encryption (access) key Kk,t for
Ck at time granule t ∈ [0, z] and encrypts the data of
security class Ck with key Kk,t, whenever Ck is a security
class of leaf node. Kk,t is computed as Equation (5), where
VB(t) is computed with the method in Section 4.2.2. It
is worth noting that only the data (leaf) nodes of EHR
structure are encrypted with the access keys.

Kk,t = HK

(
Kk‖VB(t)

)
(5)

5.3. User Registration

When a user (doctor) Di requests registration in the EHR
system, TA computes user master key KDi and issues a
system identity credential to user Di as the identity proof
to access the EHR system. The system identity credential
should contain SigTA

{
EncPKDi

(KDi , HK(·))
}

and

EncPKDi
(KDi , HK(·)), where SigTA {M} is a digital

signature signed with TA’s private key on message M
and EncPKU (·) is a ciphertext encrypted by public key
encryption algorithm with U’s public key.

5.4. User Request

Once the user Di has obtained the system identity
credential, he can request access to the EHR data of a
specific patient (or patients) with role ro and keyword
I within consecutive time granules [tb, te] ∈ [0, z]. TA
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first verifies user’s system identity credential. Then
TA searches the access control policies. If the request
matches the access control policies, TA retrieves the
set of secured indices

{
HKxr

(
Ir
)}

, where Ir is the
rth retrieved index nodes on keyword I . Next, TA
locates the right root nodes of FBSs and calculates
the values V u of these nodes (see Algorithm 1). At
last, TA issues the doctor an access credential, which
contains SigTA

{
EKDi

(
tb, te, {V u} ,

{
RCDi

,Ck

})}
,

EKDi

(
tb, te, {V u} ,

{
RCDi

,Ck

})
,

SigTA

{
EncPKDB

(
Di, tb, te,

{
HKxr

(Ir)
})}

and
EncPKDB

(
Di, tb, te,

{
HKxr

(Ir)
})

, where EKDi
(·) is

a symmetric encryption algorithm with secret key KDi

of user Di, {V u} is a set of root nodes’ values of FBSs,{
RCDi

,Ck

}
is a set of relationship values,

{
HKxr

(Ir)
}

is a set of secured index nodes.

5.5. Access and Decryption

Suppose a user Di has received an access credential from
TA and has granted access time interval [tb, te], then he
can decrypt and read EHR data of Ck at any time granule
t ∈ [tb, te], whenever Ck ≺ CDi .

1. In the current time granule t ∈ [tb, te], user Di

requests EHR data with system identity credential
and access credential. DB verifies the authenticity
of the two credentials by verifying TA’s signature
and checks the identity of the user and the time
granule against the access credential. Then DB
retrieves encrypted data of security class Ck by
comparing the values of

{
HKxr

(Ir)
}

with stored
indices and sends them to user Di.

2. User Di retrieves {RDi,Ck} and V 0, · · · , V u from
the access credential with his secret master key, and
computes Kk with Equation (4) and VB(t) with the
method in Section 4.2.3. Then user Di computes
decryption key Kk,t with Equation (5).

3. Finally, the encrypted data of security class Ck can
be decrypted by the authorized user Di with the
derived access key Kk,t.

Note that, first, in the process of access EHR data, TA
is entirely offline except the process of issuing system
identity credentials and access credentials, which can be
done before the access time interval. In the granted time
granules, user communicates with DB directly without
involvement of TA. This approach avoids complicated
communication among user, TA and DB in each time
granule, thereby reducing the communication overload
of TA. Second, in order to access and control of EHR
data, a special software, which can provide data and key
management (such as limiting the saving and copying
of ciphertext and plaintext of EHR data, and deleting

EHR data and access key when current time granule has
expired), must be installed on the client.

6. ENFORCEMENT VERIFICATION

This section focuses on the discussion of security and
privacy analyses of our RBTBAC scheme.

6.1. Security Analysis

The discussion of security of RBTBAC protocol contains
the security against possible attacks and the secure indices.
Basically, successfully accessing and decrypting EHR data
must have both valid system identity credential and access
credential. In our scenario, we suppose that user never
reveals his system identity credential to others, namely
his master key KDi is secretly kept. Once the user is
compromised (namely, his master key is exposed), his
system identity credential and his master key should be
revoked by TA immediately.

6.1.1. Attack from the Outside
The first scenario is an adversary without system

identity credential and access credential attempts to access
data. He may try to request encrypted EHR data from
DB with a forged system identity credential and a forged
access credential (or an access credential from other
user). Obviously, the adversary will fail to pass the
verification, when DB verifies the signature of system
identity credential with TA’s public key. In addition, the
adversary cannot decrypt the EHR data without valid
system identity credential and access credential even if he
gets the encrypted EHR data.

6.1.2. Attack on Unauthorized Class
The second situation is a malicious user Di of the EHR

system may attempt to access data of an unauthorized
class C′k (which has never accessed by the user) in
consecutive time granules [tb, te]. Assume the user
has legally obtained access credential containing
SigTA

{
EKDi

(
tb
′, te
′, {V u} ,

{
RCDi

,Ck

})}
,

EKDi

(
tb
′, te
′, {V u} ,

{
RCDi

,Ck

})
,

SigTA

{
EncPKDB

(
Di, tb

′, te
′,
{
HKxr

(Ir)
})}

and EncPKDB

(
Di, tb

′, te
′,
{
HKxr

(Ir)
})

, where
tb
′ ≤ tb ≤ te ≤ te

′, Ck ≺ CDi , Ck′ ⊀ CDi and k 6= k′.
To request the EHR data of class C′k, the user needs to
forge values

{
RCDi

,Ck′

}
and

{
HKxr

(I ′r)
}

. However,
the user cannot pass the verification using a forged access
credential without TA’s signature. Therefore, the user
cannot access any EHR data of unauthorized class because
of the unforgeability of the signature.

6.1.3. Attack in Unauthorized Time Interval
The third type of attacks is a malicious user Di of EHR

system may attempt to access data of security class Ck in
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unauthorized time interval [tb′, te′]. Assume that in time
interval [tb, te], where tb ≤ te < tb

′ ≤ te
′, user Di has

right to access the data of class Ck, that is, he can get
values

{
RCDi

,Ck

}
from the valid access credential. In

addition, in time interval [tb
′, te
′], the user may obtain

tb
′, te′ and

{
V u′} from his other access credentials. But

he still can not get EncPKDB

(
Di, tb

′, te
′,
{
HKxr

(Ir)
})

without DB’s private key. Even if the user successfully
forged the values, he will fail to pass the verification using
a forged access credential without TA’s signature. Thus, the
user cannot access EHR data in unauthorized time interval
because of the unforgeability of the signature.

6.1.4. Collusion Attack
Some existing time-bound key management schemes

are proved insecure against collusion attack, such as
Tzeng’s scheme [6] is insecure against Yi and Ye’s attack
[13], Chien’s scheme [7] is insecure against Yi’s attack
[19], and Bertino’s scheme [11] is insecure against Sun’s
attack [20]. These collusion attacks can be described in our
scheme like this: one or two users collude with the other
user Di to derive certain access credential and access key
of a unauthorized class Ck′ , then try to request encrypted
EHR data of Ck′ with the forged access credential from
DB. Suppose Di is able to derive the access key Kk′,t

of Ck′ by getting Kk′ and VB(t) from conspirators. In
addition, he needs to request encrypted data with a forged
access credential. Similar to above attacks, based on the
unforgeability of the signature, user Di will fail to obtain
the encrypted data from DB.

6.1.5. Security of Indices and Search
As mentioned in Section 5.1, each index node is

encoded by its class key Kx which is never exposed
to users or untrusted DB. Therefore, a vicious user or
adversary will not obtain any information of indices even
if he accesses the index nodes by malicious means.

In order to successfully decrypt an index node, the
adversary should know the class key Kx, which is secretly

computed with CIDx and H ′ by encryptor. Obviously,
without knowing CIDx and H ′, adversary cannot figure
out Kx directly. From the hierarchical key structure, there
are two ways to compute the class key Kx. The first is
calculating from top to bottom. The second is calculating
in reverse. With top-down approach, class key Kx can
be computed through one of its superordinate nodes Ki

and the corresponding relationship value RCi,Cx , where
Cx ≺ Ci. In our scheme, the adversary cannot compute
Kx, since both of these two values are kept secret,
even if he has KDi , where Cx ≺ CDi . With bottom-
up approach, class key Kx can be computed through
one of its subordinate nodes Kj and the corresponding
relationship value RCx,Cj , where Cj ≺ Cx. Again, the
adversary cannot work out Kx without knowing both of
two values, even if he get a class key Kk, where Ck ≺ Cx.

For searchability as shown in Fig. 6, DB is given the
encoded indices of requested EHR data through the access
credential from user. Then it compares the given values
with all entries of secured indices, which are encrypted
and updated by encryptor. If any entry of secured indices is
identical to the given value, DB goes to the pointed address
to next level search until the encrypted EHR data are
located. Finally, after the requested EHR data of security
class Ck has been retrieved, DB sends them to the user.
Throughout the search process, DB does not have any
knowledge of indices and EHR data.

6.2. Privacy Analysis

Our RBTBAC model is capable of providing better privacy
for patients from four aspects.

First, when a user accesses EHR data, our RBTBAC
scheme not only narrows the access scope of EHR data by
dividing EHR data into different security classes, but also
limits the access time to the period of providing healthcare
treatment. The user consequently is only given the right
to access EHR data of authorized classes in authorized
time interval. Accordingly, the privacy of patient can be
protected from both space and time dimension.

Second, all the index nodes are securely stored in
remote DB, so that both users and DB are unaware of
any intermediate index node and internal structure of EHR
data. It greatly reduces the probability a deliberate user
deduces additional information about the patient from
intermediate nodes or the relationship of partial ordered
nodes. For example, a user has accessed all blood test
results of the patient under different disease category
nodes. Then he may infer other disease information about
the patient if he has knowledge of those disease category
nodes.

Third, unlike most existing key management schemes,
our RBTB key management scheme does not publicly
disclose any relationship value between partial ordered
classes, even the relationship between patients and doctors.
Thus, it avoids the situation where a professional user
could infer the disease of patient from the doctor-patient
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relationship. For example, we can infer that a patient has
cancer if he has a relationship with a cancer specialist.

Finally, we use patient-controlled access policy to better
protect privacy of patients. We strongly suggest that patient
should be involved throughout the process of developing
access control policies to determine the sharing of their
own sensitive information with other users and CDOs.
This can help patients better understand the EHR system,
control their EHR data more tightly, and know who is
accessing their EHR data at what time.

6.3. Credential Revocation

Usually, credential revocation involves the certificate
authority periodically issuing a signed data structure
called a certificate revocation list (CRL). CRL is used
for revoking credential in certificate using system which
has certificate authority. A CRL is a time stamped list
identifying revoked certificates which is signed by a CA
or CRL issuer and made freely available in a public
repository. Each revoked credential is identified in a CRL
by its credential serial number.

In our model, once access credential has expired, it is
invalid automatically without being revoked by TA. When
a user requests EHR data with an expired access credential,
DB will detect this unauthorized access by checking the
access credential and reject the request. However, there are
still two cases that TA has to take the initiative to revoke the
user’s access credential even the system identity credential.

The first case is a user terminates healthcare treatment
during the authorized time interval. In this case, the EHR
data cannot be accessed by the user anymore and the access
credential should be revoked by TA immediately. The
revocation of access credential can be done by following
two steps: First, TA updates Access Credential Revocation
List (ACRL) by adding an entry of serial number of the
revoked access credential. Second, DB checks the ACRL
with access credential for each access request. If the serial
number of access credential is in ACRL, DB rejects the
access request.

The second is a worse case that a user is compromised
by an adversary. In this situation, not only all access
credentials but also the system identity credential of
the user should be revoked. Once the client of user is
compromised, the master key of the user is released to
public. TA adds the serial number of system identity
credential into System Identity Credential Revocation
List (SICRL) and appends all serial numbers of access
credentials held by the compromised user into ACRL.
Consequently, each request for access credential from a
user should be validated by TA through checking the
SICRL.

7. SPACE AND TIME COMPLEXITY

In the RBTBAC model, RBTB key management scheme is
the most important part. Therefore, performance analysis

of RBTBAC model can be translated to the analysis
on RBTB key management scheme. The performance
measure of RBTB key management scheme contains
two folds: space complexity and time complexity. The
discussion is further focused on two aspects: server’s
perspective and user’s perspective.

7.1. Space Complexity

We first define some parameters to facilitate the following
analysis. Let NT be the total number of security classes
in the encryption key structure (see Fig.4a), Nleaf is the
number of data nodes (leaf nodes) of both encryption and
decryption key structures in Fig.4 and Nk is the number
of security classes authorized to user in the current time
granule. Then the analysis on the server and client are
described below.

Generally, the space for public information is a main
parameter to measure the space cost of a key management
scheme. The comparison of space complexity of public
values is shown in Table III. Our RBTB key management
scheme does not publish any relationship value on the
board, as opposed to other existing schemes where all
partial ordered relationship values are published. Thus, our
scheme is space-saving in term of public information.

For encryptor, it stores two kinds of keys: long-term
class keys for index nodes and access keys for data nodes.
The space to store all these two types of keys is relative
to the total number of nodes in key structures, that is, NT

long-term class keys and Nleaf access keys. In addition,
to save the storage space of server, our scheme does not
require encryptor to store any system identity credential
or access credential. On the contrary, encryptor sends all
needed information to user through the system identity
credential and access credential at the first request. When
the access request comes, DB only needs to verify the
information contained in the two credentials.

For a user of EHR system, he/she is required to securely
store one long-term master key and Nk temporary access
keys, plus one system identity credential and several
access credentials. However, the access keys and access
credentials will be invalid automatically and deleted when
the granted time interval has expired. Chien’s scheme [7]
and Bertino’s scheme [11] use a tamper-resistant device
to store all the information and securely compute access
key for specific time granule, but issuing a tamper-resistant
device for each user is impractical in distributed and
worldwide systems such as EHR system. Their approach
actually sacrifices convenience for security.

7.2. Time Complexity

Table I contains a summary of hardware and software
used in our experiments. The experiments of this paper
were run in Code Blocks. Each experiment was run 20
times and averaged. It is known that encrypting all EHR
data in each time granule is time-consuming in such time-
bound key management scheme. The speed of encryption
depends on the used encryption algorithm and server
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Table I. Experimental Setup

Hardware/Software Components

Processor Intel(R) Core(TM)2 Duo E7500 2.93GHz
Memory 2.0GB

Operating system Windows 7 Ultimate
Programming language/Library C++/Crypt++

IDE Code::Blocks

Table II. The Number of Hashing Operations in Each Time
Granule

[0, z] Linear chain Binary tree Multi-tree

One week 7 3
Fortnight 14 4

One month 30 5
One year 365 9 3

performance, which are beyond scope of this paper. A
recommended approach is to respectively encrypt different
parts of the EHR data with multiple processors at same
time. In addition to encryption time, another important
parameter to measure the time complexity of a time-bound
key management scheme is the key generation time. In
this section, we discuss the time complexity of generating
access keys. The analysis is respectively given in two folds:
the time of encryption key generation and the time of
decryption key generation.

7.2.1. Computation of Encryption Key
For the server side, the time for generating an encryption

key within a time granule mainly depends on the time
of computing time granule values, since the class key
is unchanged. The main operation in generation of time
granule values is hashing operation. Thus the efficiency for
producing encryption key is principally determined by the
number of hashing operations. From above analysis, for a
fixed timeline [0, z], the number of hashing operations in
each time granule is less than dlog2 (z + 1)e with binary
tree structure, as opposed to linear hash chain method used
in most existing time-bound key management schemes [7,
11, 21, 14] where number of hashing operations is z + 1.

Assume the smallest time granule is one day, the
number of hashing operations in each time granule is
shown in Table II by comparing our time tree method
with existing linear chain method. We can infer that,
given the same time granularity, the longer the timeline
[0, z] is, the more efficient the time tree is. For example,
when the time granule is daily and the whole timeline
is one year, it needs 365 hashing operations with linear
chain method to compute time granule value, while it
needs 9 hashing operations with time binary tree method,
furthermore it only needs 3 hashing operations with time
multi-tree method in Fig.5b.

7.2.2. Computation of Decryption Key
Before issuing an access credential, encryptor has to

compute granted time parameters for user. In the linear
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chain method, the given time parameters are Htb(a) and
Hz−te(b). Therefore, the time complexity for computing
time parameters is O(z − (te − tb)). In our time tree
method, the time for encryptor generating time parameters
includes two parts: the time for locating root nodes of FBSs
and the time for computing hash values of these root nodes.

According to Algorithm 1, we can infer that the
efficiency of locating root nodes only depends on the scale
of time interval [tb, te]. The performance of Algorithm 1
is shown in Fig.7. For the sake of convenience, we discuss
the efficiency based on the condition that the scale of time
interval [tb, te] (namely te − tb + 1) is power of 2. Here
we use binary tree as time structure. The average results
are displayed in Fig.7. When the scale of [tb, te] reaches to
210, it spends almost 4000 ns to locate root nodes of FBSs,
which is much faster than hash operations (see Fig.8).

Given fixed scale of whole timeline, say [0, 1023], we
illustrate the comparison of the two methods in Fig.9 and
Fig.10. Fig.9 shows the comparison of hashing operations
between binary tree method and linear chain method. It is
seen that the number of hashing operations of binary tree
structure drops as the time interval lengthens, while the
number of hashing operations of linear chain structure is
gradually increases. But when the scale of [tb, te] exceeds
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around 930, the linear chain method is slightly faster than
binary tree method. However in the EHR system, users
usually are granted a short time interval to access EHR
data. Therefore, in most cases, binary tree structure is
extremely efficient compared to the linear chain structure.
Fig.10 demonstrates the total time consumption for
encryptor generating time granule parameters in both
binary tree method and linear chain method. For saving
space, binary tree method is abbreviated as BT and linear
chain method is abbreviated as LC in the graph. The
results are actually the sum of the time for locating root
nodes (see Fig.7) and the time for hashing operations
(see Fig.8). From Fig.10 we have conclusion that our
scheme is much more efficient than existing time-bound
key management schemes in the server side.

In user side, the time for producing the decryption key
also consists of two parts. The first part is the time for
generating long-term class key with user’s master key. The
second part is the time for computing time granule value.
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For computing class key, the user only needs to compute
one modular exponentiation in our scheme.

For calculating time granule value, in contrast to
O(te − tb) with linear chain method, the time complexity
of hashing operations is O(blog2(te − tb + 1)c) with
binary tree method. Distinctly, the binary tree structure is
more efficient than linear chain structure, and when the
granted time interval becomes longer, the gap will be even
greater as shown in Fig.11. When the size of given time
interval goes to 210, the number of hashing operations
also reaches to 210 in linear chain method. Oppositely,
the number of hashing operations is still approximately
10 with binary tree method. The experimental results are
shown in Fig.12. The graphic shapes of the set of binary
tree methods are much flatter than the set of linear chain
methods’. Therefore, our scheme is time-saving in user
side.

In summary, our RBTB key management scheme is
space-saving, and more important, is more efficient than
most existing schemes.
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8. RELATED WORK

The main works related to our scheme are access
control and time-bound key management technique. In this
section, we briefly describe existing works on these two
fields.

8.1. Other Access Control Models

Recently, Israelson et al. [22] suggest restricting access to
EHRs to users with a valid token. Access tokens are issued
to users for a prescribed amount of time where both the
user and the amount of time are authorized by the patient.
In our scheme, we employ an extended role-based access
control model, role-based and time-bound access control
model, to provide privacy aware access control on EHR
data that allows users to access authorized data only in
a specific time interval. In this section, we describe role-
based, attribute-based and cryptographic access control
models, which are considered more applicable to EHR
setting.

8.1.1. Role-Based Access Control
There are a number of works on RBAC [23] for

medical systems [24, 25, 26, 27, 28]. Among them, the
authors of [24] proposed a set of authorization policies
enforcing role-based access control for the electronic
transfer of prescriptions. Then an implementation of EHR
prototype system including a basic network and role-based
security infrastructure for the United Kingdom National
Health Service is demonstrated in [25]. Cassandra [26]
is a trust management and role-based policy specification
language, which was presented for expressing access
control policies in large-scale distributed systems. In this
work, a case study discussed how the language can be
used to specify security policies for a UK national EHR
system. However, none of above approaches took into
account of the composition feature of EHR document,
and therefore cannot support a more fine-grained access
control to selectively share composite EHR data. Recently,
the authors of [27] argued an approach for modeling role-
based access control scheme for composite EHR. They
designed three dimensional properties for each sub-object
and property-based authorization to provide a flexible yet
efficient means to select and authorize a collection of sub-
objects.

Healthcare RBAC Role Engineering Process [28]
is another significant work for the Healthcare RBAC
Task Force (TF) developed by Science Applications
International Corporation (SAIC) in May 2004. The
RBAC TF is engaged in a collaborative effort to define
common industry-wide roles capable of supporting health
information systems. The goal of the RBAC TF is to
formalize this shared effort through an ANSI-approved
healthcare role standard. The Healthcare RBAC Role
Engineering Process document describes the methodology
that the TF will follow in pursuing its goal and the

mechanisms, processes and products that will be used to
create, harmonize, and report TF efforts.

8.1.2. Attribute-Based Access Control
In ABAC, access is granted not based on the rights of

the subject associated with a user after authentication, but
based on attributes of the user. The user has to prove so
called claims about his attributes to access control engine.
An attribute-based access control policy specifies which
claims need to satisfied in order to grant access to an
object.

Some researchers have applied ABAC to access the
medical records. Paper [29] presented a patient-centric,
attribute-based and source verifiable framework for health
record sharing based on MedVault project [30]. It provides
patients with substantial control over how their information
is shared and with whom and permits fine-grained
decisions based on the use of attribute-based techniques for
authorization and access control. Another attribute-based
health records system currently under development is the
”security infrastructure and national patient summary” as
part of the Swedish national eHealth system [31]. Like
MedVault, the system is being implemented in XACML
(eXtensible Access Control Markup Language) [32],
which is able to provide decentralized administration and
credentials distribution. Literature [33] presented writing
XACML policies and examined performances of access
control time using various Sun XACML access control
policies in case when attributes are in hierarchical structure
in a distributed EHR.

8.1.3. Cryptographic Access Control
Cryptographic access control is a new distributed access

control paradigm designed for information systems. It
defines an implicit access control mechanism, which relies
on cryptography to provide confidentiality and integrity of
data managed by the system. It is particularly designed to
operate in untrusted environments where the lack of global
knowledge and control. Now, it is applied to security-
enhanced systems, e.g. EHR sharing systems.

In the existing CAC schemes, the vast majority are
based on hierarchical structure. Hierarchical cryptographic
access control schemes first emerged in [34, 35], which
are more general and capable of providing security in
different contexts without requiring extensive changes to
the fundamental architecture. For instance, in situations
that require data outsourcing, CAC schemes are useful
because the data can be double encrypted to prevent a
service provider from viewing the information but yet be
able to run queries or other operations on the data and
return a result to a user who can decrypt the data using the
keys in their possession [36]. CAC schemes are typically
modeled in the form of a partially ordered set of security
classes that each represents a group of users requesting
access to a portion of the data on the system.

From the end of last century, CAC has been widely
used in file system. A group sharing and random access
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model in cryptographic storage file systems was proposed
[37]. Paper [38] presented a cryptographic access control
in distributed file systems, in which data are encrypted
as the applications store them on a server. It separated
read and write access: read access to the physical storage
device is granted to all principals and write access can
be granted to everyone. The authors of [39] first analyzed
*nix systems and identify an urgent need for better privacy
support in their data sharing mechanisms and gave two
solutions for privacy enhancement. Later, they proposed a
data sharing platform, named SHAROES, for outsourced
storage environment. It provides rich *nix-like data sharing
semantics [40].

8.2. Other Time-Bound Key Management
Approaches

We have already introduced time-bound key management
technique in Section 2.2 and discussed how our approach
tackles the problem differently. Table III summarizes
the comparison of time-bound key management schemes
on various attributes. Specifically, our scheme provides
privacy and security enhancement for EHR system by
combining role-based access control. In the rest of
this section, we discuss other existing time-bound key
management schemes.

In 2002, Tzeng [6] first proposed a time-bound
hierarchical key management scheme that requires each
user to store information whose size does not depend
on the number of time periods. However, this scheme is
costly because the Lucas function operation incurs heavy
computational load. Most importantly, Tzeng’s scheme
has been proved to be insecure against collusive attacks,
whereby two or more users assigned to some classes
in distinct time period, collude to compute a key to
which they are not entitled [13]. Subsequently, Chien [7]
put forward an efficient time-bound hierarchical key
management scheme based on tamper-resistant devices.
However, Santis and Yi [41] [19] showed that malicious
users can collusively misuse their devices to gain
unauthorized accesses and also proposed countermeasures.
Then Xu [21] improved Chien’s scheme without public key
cryptography and they proved their scheme is as efficient
as Chien’s and resistant to Yi’s three-party collusion
attack. Another time-bound hierarchical key assignment
scheme was proposed by Huang and Chang [8] and later
shown to be insecure against collusive attacks too [42].
Yeh [9] proposed an RSA-based time-bound hierarchical
key assignment scheme, which was proved to be insecure
against collusive attacks in [43]. Wang and Laih [10] used a
modification of the Akl-Taylor scheme to construct a time-
bound hierarchical key management scheme. Then, two
provable-secure time-bound hierarchical key assignment
schemes the one is based on symmetric encryption
schemes, whereas, the other makes use of bilinear maps,
were posed by Ateniese and Santis [43], who proved
their schemes are simultaneously practical and provably-
secure. After that new constructions for provably-secure

time-bound hierarchical key assignment schemes were
brought forward and tradeoff among storage space and
key derivation time were exhibited by Santis [44]. But
provably-secure schemes are inefficient when the system
has large number of data. Liu and Zhong [12] advanced
a practical time-bound hierarchical key scheme without
tamper-resistant device, which was claimed to be more
secure and need less computational time. However, in their
scheme users need to hold a number of keys to decrypt the
data on multiple classes. Recently, Bertino [11] proposed
another new time-bound scheme using elliptic curve
cryptography and claimed that their scheme was efficient
and secure against possible attacks. However, Sun [20]
found that Bertino’s scheme was not as secure as they
claimed and some possible improvements were proposed.
Moreover, tamper-resistant device makes Bertino’s scheme
difficult to implement in EHR systems since it is hard
to securely issue tamper-resistant device when users
are distributed around the world. Unfortunately, above
schemes are only applicable to static access hierarchy,
since they cannot be used in dynamic and flexible
EHR system. Sui [14] presented a key generation and
assignment scheme for time-bound hierarchy dynamic
access control. But their scheme is not efficient enough
when applying it to EHR system which has very large
number of medical data.

For applying time-bound key management scheme
to EHR system, it should be fully considered and re-
developed. Our scheme focuses on integrating role-based
access control with time-bound key management, so
that it satisfies following four requirements of EHR
setting: security (especially against collusion attack), the
minimal key storage space in user side (ideally, only one
key), privacy preserving (especially for patient’s sensitive
medical information), and efficiency (mainly measured by
the time of generating encryption/decryption keys).

9. CONCLUSIONS AND OTHER
APPLICATIONS

We have put forward a practical Role-Based and Time-
Bound Access Control (RBTBAC) model for EHR system.
Differing from basic RBAC model, this access control
model emphasizes more on the flexibility of roles and
has the capability to control the access of sensitive data
from time dimension. Technically, we have proposed
a role based and time bound (RBTB) hierarchical key
management scheme. For role-based, we have developed a
privacy-aware and dynamic key structure. For time-bound,
we have employed a time tree method for generating time
granule values. We have analytically and experimentally
proved that RBTBAC model is more suitable for EHR
system since it offers high-efficiency and better security
and privacy for patients.

In our future work, we are interested in experiments on
real medical data which are hard to get. As the diverse
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Table III. Comparison of Time-Bound Key Management Schemes

Tzeng’s scheme [6] Chien’s scheme [7] Bertino’s scheme [11] Our scheme

Implementation
requirements

Lucas function Tamper-resistant device Tamper-resistant device,
ECC

System identity credential,
access credential

Number of public values NT + 6 NT − 1 NT (NT − 1)/2 0
Number of operations
for encryptor deriving an
access key

Te ,TL ,Th (z + 2)Th (z + 2)Th + TE Te ,(dlog2(z + 1)e +
2)Th, Te

Number of operations for
user deriving an access
key of data node (l-edge-
distance child class)

(te − tb + r)Te, (te −
tb)TL, Th

(te − tb + 1 + l)Th (te − tb + 2)Th, TE (blog2(te − tb + 1)c +
1)Th, Te

Collision attack Insecure (Yi and Ye’s
attack)

Insecure (Yi’s attack) Insecure (Sun’s attack) Secure

Suppose Ck � Cx ,t ∈ [tb, te].
NT : total number of security classes |C|.
r: number of child classes Cx on path from Cx to Ck .
Th: the time complexity for one hashing operation.
Te: the time complexity for one modular exponentiation.
TL: the time complexity for one Lucas function operation.
TE : the time complexity for one elliptic curve scalar multiplication.

formats of medical data which are different from the
format of general file, the preprocessing of medical data
that makes the program can directly manipulate these data
is a tough problem. The experiments will focus on the
efficiency of encryption on a mass of real medical data and
possible improvements.

It is important to notice that our RBTBAC model can
be applied to many different fields, especially sensitive
information system such as government or military
systems, banking systems and e-commerce systems.
Above description and experiments show that our model
can provide more stringent mandatory access control
(MAC) from both spatial and temporal dimensions and
data confidentiality for this kind of system.

Additionally, the RBTBAC model also can be used in
the systems storing a mass of data on the untrusted remote
DB or cloud. For such kind of systems, data encrypted
stored is necessary. So, how to distribute keys for the
legitimate users and how to build an index on the ciphertext
are the key issues. Obviously, our RBTB key management
scheme can be used to solve these issues. Moreover, our
scheme gives a solution for the sharing of data across
security domains between different settings. It also can
be used to guarantee better security and privacy of data
sharing.
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