
Project Hoover: Auto-Scaling Streaming Map-Reduce
Applications

Rajalakshmi Ramesh
College of Computing

Georgia Institute of Technology
Atlanta, GA 30332

rrajalakshmi@gatech.edu

Liting Hu
College of Computing

Georgia Institute of Technology
Atlanta, GA 30332

foxting@gatech.edu

Karsten Schwan
College of Computing

Georgia Institute of Technology
Atlanta, GA 30332

schwan@cc.gatech.edu

ABSTRACT

Real-time data processing frameworks like S4 and Flume have

become scalable and reliable solutions for acquiring, moving, and

processing voluminous amounts of data continuously produced by

large numbers of online sources. Yet these frameworks lack the

elasticity to horizontally scale-up or scale-down their based on

current rates of input events and desired event processing

latencies. The Project Hoover middleware provides distributed

methods for measuring, aggregating, and analyzing the

performance of distributed Flume components, thereby enabling

online configuration changes to meet varying processing

demands. Experimental evaluations with a sample Flume data

processing code show Hoover’s approach to be capable of

dynamically and continuously monitoring Flume performance,

demonstrating that such data can be used to right-size the number

of Flume collectors according to different log production rates.

Categories and Subject Descriptors
D.4.1 [Operating Systems]: Process Management – scheduling;

D.4.7 [Operating Systems]: Organization and Design –

distributed systems.

General Terms
Management, Performance, Design, Experimentation.

Keywords

Flume OG, Pastry, Scribe, Queuing Model.

1. INTRODUCTION
Web 2.0 companies like Facebook, Yahoo, LinkedIn, and Twitter

generate large amounts of log data, including (1) user activity

events like clicks, comments, or sharing, (2) operational metrics

like call latency and errors, and (3) system metrics like CPU,

memory, and network utilization. Such data is invaluable for

debugging, performance management, and for commercial

reasons. Consider for instance, an e-commerce website that

collects logs to monitor the number of users who are currently

viewing a particular product. Using this data, the company can

increase sales by running micro-promotions that offer, say “20%

off”, if more than 5000 users are currently viewing the same

product.

Recent years have seen the development of distributed log

aggregators specialized for collecting and processing online log

data, such as Facebook's Scribe [3], Yahoo's Chukwa [10], and

Cloudera's Flume [2]. These systems convert log entries into

events, which are then aggregated and processed by distributed

sets of agents in multi-tier frameworks backed by key-value stores

like HBase [5] and distributed file systems like HDFS [6].

Online log aggregators face challenges. First, their processing

capabilities should be horizontally scalable -- up or down -- based

on current volumes of input logs. Such elasticity is important

because events will be delayed or even lost if the aggregate

consumption rate of intermediate processing nodes, called

`collectors’ in Flume, cannot keep pace with the rate at which log

events are produced. Second, there is a need for load balancing

across different sets of collectors, when log input rates are not

evenly distributed across the system’s many sources. Third, such

elasticity must function at volumes up to the few billion messages

a day, as companies like Facebook collect everything from access

logs, to performance statistics, to actions going to its News Feed.

At these scales, however, the online monitoring required for

elasticity at this scale is challenging, particularly for current

commercial approaches that expose metrics through JMX MBeans

[8], where each MBean’s attributes and operations are externally

accessed through RMI [9]. RMI does not perform well at large

scale due to the overheads of its registration logic, serialization,

and its slow failure detection and cleanup. Recent solutions like

Jolokia [7] address this by exposing MBeans over HTTP,

Cloudera's Flume allows users to gather node metrics via HTTP or

by injecting them as a separate data flow along with the data being

processed. However, those additional data flows add unmanaged

overhead to the streaming data processing subsystem. Finally,

research approaches like those described in [15] constitute

potential solutions, but have not yet been deployed in commercial

settings.

To enable auto-scaling online web log processing systems, we

present Project Hoover, which is middleware that addresses the

above monitoring challenges by integrating the Pastry/Scribe

multicast framework [14] [11] with Cloudera's Flume log

processing system.

Novel approach to online metrics gathering. Rather than using an

additional internal data flow to gather metrics, Hoover creates a

separable external channel to export metrics to an `aggregator’

that operates alongside Flume’s central management master used

for dynamic reconfiguration of Flume components. This is

implemented via a light-weight group communication and event

notification system (Scribe) built on a peer-to-peer overlay

(Pastry).

Online assessment of Flume component `health’ enables auto-

scaling. The aggregator uses dynamically collected metrics to

assess operational characteristics of the Flume application’s

execution. Specifically, this paper demonstrates the use of such

metric data to model Flume components as a network of queues

and measuring variables like average input rates, output rates,

queue lengths, etc. This information is then used to auto-scale

Flume to match its aggregate processing capacity to dynamically

changing log input rates, to maintain desired end-to-end

processing latencies.

Performance measurements demonstrate the efficiency of

Hoover’s online monitoring and analysis, as well as its utility for

adjusting Flume performance to current conditions and needs.

Specifically, they show only a small increase in anycast round-trip

times as the number of nodes in the Pastry-based monitoring

overlay increases. Further, because the average aggregation time

per node is only on the order of tens of milliseconds, it is possible

to aggregate statistics from a large number of nodes within time

intervals of only a few minutes. Consequently enabled scale-

up/down is shown useful via a simple auto-scaler implemented

based on a Secant root finding method. It predicts the number of

collectors required to maintain the health of the Flume system, by

providing a good approximation for Flume configurations with

high average queue lengths and low health scores.

The remainder of this paper is organized as follows. Section 2

discusses background and related work. Section 3 describes

Hoover‘s design. Section 4 evaluates Hoover with experiments.

We conclude with directions for future work in Section 5.

2. BACKGROUND AND RELATED WORK
We first explain the design pattern for today’s multi-tier log

processing systems like Flume. We then discuss related literature.

2.1 BACKGROUND
Flume is a distributed service for collecting and processing large

amounts of log data generated by clients, ultimately placed into

some persistent store for later use. Figure 1 shows a typical

deployment of Flume comprised of three tiers: (1) the agent tier

generates events from client logs; (2) collectors aggregate events

from separate data logs and forward them to (3) the storage tier

comprised of HBASE and the Hadoop Distributed File System

(HDFS).

Every node in Flume has a source and a sink. The source tells it

where to collect data, while the sink tells it where to send the data.

A separate process, called the Flume master, is the central

management point; it directs data flows by assigning source/sink

configurations to all nodes, and it communicates dynamic

configuration updates. Sinks can additionally be configured with

`decorators’ that perform simple processing on data. For example,

network throughput can be increased by batching events and then

compressing them before moving them to the sink.

Agent
Collector

Decorator

Agent
Collector

Decorator

Agent
Collector

Decorator HBASE/HDFS

MasterMaster

The 1st tier The 2nd tier The 3rd tier

Figure 1. Architecture of the Flume System.

2.2 RELATED WORK
Facebook’s Scribe [3] and Yahoo’s Chukwa [10] gather logs

based on the “push” model. Scribe uses local servers running on

each node, in order to aggregate online logs and send them to a

central collector (or to multiple collectors). Yahoo’s Chukwa is

built on top of the Hadoop distributed file system and the

MapReduce framework. It uses a push model in which each

frontend node sends logs to a set of collectors over sockets. The

collectors write log entries to HDFS. LinkedIn’s Kafka [13]

gathers logs based on a “pull” model. A stream of messages of a

particular type is defined by a topic, and a producer can publish

messages to a topic. The published messages are then stored at a

set of servers called brokers, which periodically write data into

HDFS.

The systems outlined above facilitate reliable, scalable, efficient,

and time critical aggregation and storage of live data. However,

we are not aware of their ability to auto-scale their numbers of

collectors based on log volume changes or workload imbalance.

This will result in variable latencies in moving log data and raises

the possibility of data loss and failure of collectors when they are

overwhelmed.

Existing commercial log monitoring systems expose a limited set

of metrics through JMX MBeans [8], where metric collection

typically involves injecting JMX metrics into systems like

Ganglia [4], Amazon CloudWatch [1], etc. Ganglia has been used

at large scale to collect summary operational statistics in grids and

clusters. However, its membership management uses native IP

Multicast to communicate with its peer nodes, which is not

appropriate for scale-out datacenter systems in which components

join and leave frequently. Preferable would be lighter weight

solutions with on-the-fly deployment and simple membership

management.

Amazon’s CloudWatch provides a generic and comprehensive

solution for monitoring resources, applications, and services. It

monitors metrics generated by a customer’s applications, and it

provides system-wide visibility into resource utilization,

application performance, and operational health. However, its

closed source nature restricts its use to Amazon web services and

its cloud resources.

Project Hoover provides a simple way to collect metrics about the

operational behavior of stream processing systems like those

constructed with Flume. Specifically, we use Scribe and Pastry,

which jointly provide efficient request reply routing and fault-

recovery and can quickly adapt to the arrival and departure of

nodes. Statistics from different flow paths are aggregated by

publishing them in dedicated topics supported by Scribe, thus

using its “push” model to gather statistics from nodes in each tier

of the system. It then uses a “pull” model to aggregate the

gathered statistics to form a global snapshot of the overall system.

An external `aggregator’ uses aggregate information to run

models like those that evaluate and/or predict log traffic to adjust

the number of collector machines in the system.

3. HOOVER’S DESIGN
As shown in Figure 2, the Project Hoover middleware has four

main elements. They are (1) monitoring of local statistics for each

agent and collector, (2) separately summarizing/publishing

statistics within the agent group and the collector group, (3)

merging the summarized statistics of two groups and sending it to

an external aggregator using a Scribe anycast message, and (4) the

ability to run online models that use summary statistics to

dynamically tune the number of collectors in the system.

3.1 Local Node Metric Collection
Hoover models every node in the Flume system as an individual

queue, and then, agents and collectors belonging to a particular

data flow form a network of queues. Flume nodes expose three

queue variables: input rate, output rate, and queue length.

However, Flume’s implementations of source and sink elements

do not have built-in queues, thus requiring Hoover metric

collection to emulate them, as explained next.

Flume’s ‘tail’ source reads a single line from a file and converts it

into an event. The events are then pushed out of a sink element.

We interpret the number of lines read per unit time as the input

rate of the queue; the number of lines that exit the sink per unit

time is the output rate of the queue; and the average difference

between the number of lines read and the number of events that

exit the sink per unit time is the length of the queue.

Instance

Tuner Client

Instance

Tuner Client
Instance

Tuner Server

Instance

Tuner Server

Global Aggregator Flume Master

Agent

Agent

Agent

Agent

Agent

Collector

Collector

Collector

 <λ
a , µ

c , σ
a +
σ

c >

 <λa, µa,σa>

< λc, µc,σc >

Anycast Message

Multicast Message

Pastry Ring-based Overlay
Pastry Ring-based Overlay

< λa, µa,σa >

<
 e

mp
ty
 >

Figure 2. Architecture of Hoover.

Source and sink elements in logical nodes expose a Reporting

object, which provides generic methods to add queue variables

and other metrics as key-value pairs. The Reporting objects from

the source and sink are refreshed during every heartbeat interval.

Logical nodes then compute the Exponential Moving Average

(EMA) of reporting objects to form a local snapshot. For other log

processing systems, there may be alternative methods for defining

queue variables. Hoover’s performance modeling and auto-scaling

methods will apply as long as such methods can be defined.

3.2 Local Metrics Aggregation
Hoover obtains scalability and fault tolerance by using Scribe as

the communication substrate to exchange Flume metrics. Scribe is

an application-level group communication system built upon

Pastry, a DHT-based P2P overlay. Each pastry node is assigned a

nodeId based on its IP address. Pastry routes messages to a given

node by forwarding them to another node with nodeId

numerically closest to the destination node. Every node maintains

a small routing table with entries, which implies that

Pastry can route messages in hops. Scribe nodes create

and subscribe to multicast groups, called Topics. Subscribed

members can publish messages to a topic, which will then be

distributed in a multicast tree to all subscribed nodes. The root

node of the multicast tree is the pastry node with nodeId closest to

the topic name. A new node can subscribe to the topic by

computing the key from the topic name and then using Pastry to

route a subscribe message to the topic towards the root node.

When a Pastry node receives a subscribe message from another

node, it adds the node ID to its list of children and begins acting

as a forwarder of the topic. If the Pastry node is already a member

of the same group, it stops forwarding the subscribe message.

Fault tolerance is achieved via timeouts and keep-alive messages.

Specifically, if a child does not hear from its parent for some

timeout period, it sends a new subscribe message to the root and is

spliced to the multicast tree. When the parent does not hear from

its child, it removes that node from its list of children. Scribe

overcomes root node failure by moving it to the Pastry node with

the next numerically closest nodeId to the key computed from the

topic name.

Hoover uses Scribe multicast trees for Flume agents and

collectors to aggregate and summarize their local snapshots.

Every logical node spawns an instance of a Pastry node and a

custom Scribe client application [12]. Local snapshots from

agents and collectors are collected to calculate a group snapshot

that contains the group’s average input rate, average output rate,

and average queue length. We create two aggregation trees, rooted

at two rendezvous points, to disseminate local snapshots to other

members. These two trees are the “AGENT” tree and the

“COLLECTOR” tree. Agents subscribe to the “AGENT” tree,

while collectors subscribe to the “COLLECTOR” tree.

As shown in Figure 3, each node has in its local snapshot local

statistics stored as a set of (attributeName, value) pairs, such as

(InputRate, 10). Periodically, each agent node triggers a multicast

message and passes its local snapshot to every other node in the

"AGENT" group. Other nodes save others' values in their

respective caches. The same actions are taken by collectors. Over

some slightly longer period of time, once one collector receives

results from the "AGENT" group, it will combine them with the

average of its caches and sends the final global snapshot to the

external global aggregator.

If is the interval of time after which agents and collectors

publish their local snapshots to other members of their respective

Scribe groups, then the local snapshots contain the EMA of the

queue variables between times and . Each logical node

resets its local snapshot and multicasts it to other members of the

same Scribe group. Once all nodes have finished multicasting

their respective local snapshots, every node now contains an in-

memory cache of local snapshots of all members in its group.

From this snapshot, it can then compute the average input rate,

average output rate, and average queue length for the group, to

form a group snapshot. By simply replicating that snapshot to all

other group members, the same snapshot data is now available to

all group members, regardless of node failures or removals.

Layer-by-layer

“Input Rate”aggregation

10 10

10 10

10 10

10+10+10+10+10+10+10

=70

The aggregation tree rooted at Node_ID=Hash(AGENT)

(a)

multicast

Layer-by-layer

“Output Rate”aggregation

9 10 3 3

9+10+3+3+3+9+3

=40

The aggregation tree rooted at Node_ID=Hash(COLLECTOR)

(b)

multicast
3 9

3

Global

Aggregator

Agent:70

10anycast

anycast

70/2+40/2

=55

Figure 3. Local Metrics Aggregation Trees.

3.3 Global Metrics Exchange
Once the group snapshots have been computed by the agent and

collector groups, they should be analyzed globally to determine

the overall health of Flume components. Toward this end, the

group snapshots from both the agent and collector groups are

merged to give a single update vector of queue variables for the

entire network of queues, called the global snapshot. The global

snapshot is then passed to a regression model, which in turn uses

them to predict the number of collectors required to handle the

current aggregate volume of data.

We employ an independent node, called the aggregator, which is

separated from the Flume system, to combine metrics and perform

prediction. For example, let m and n be the number of agents and

collectors in a data flow when it is polled at time . Let the local

queue statistics of every node be < λ, µ, σ >, where λ, µ, and σ is

the average input rate, average output rate, and average queue

length of that node between two successive polling, .

The group snapshot of agent nodes is < λa, µa, σa >, where

 ∑

 , ∑

 and ∑

 ⁄ . Similarly, the

group snapshot of collector nodes is < λc, µc, σc >, where
∑

 , ∑

 ∑

 ⁄ . The merged global snapshot

sent to the aggregator is < λa, µc, σa+ σc >. The snapshot of every

logical node is adjusted to the configured polling period p by

linear interpolation or extrapolation, if the gap between two

successive polling times, .

A global metrics exchange is initiated using a single pull

operation, which sends an anycast message to the agent group.

One of the agents receives the anycast message and computes the

group snapshot from its in-memory cache. The agent group

snapshot is then anycasted to the collector group. One of the

collectors computes its group snapshot and merges it with the

agent group snapshot to form the global snapshot of the entire

queuing network, and it then sends another anycast message to the

aggregator with the global snapshot. Using anycast permits the

aggregator to remain agnostic of Flume node failures and

reconfiguration, reduces overall scribe message traffic, and avoids

the need for procedures that manage global metric aggregation in

lieu of node failures (e.g., assigning coordinators, dealing with

failover, etc.).

3.4 Dynamic Instance Tuning
The aggregator applies the global snapshot collected during every

polling period to a statistical analysis model used for auto-scaling.

The experiments reported in this paper use the Secant root finding

method to automatically scale the number of collectors based on

the current health of the Flume subsystem. The intuition behind

this method is that when the volume of events increases, the auto-

scaler automatically adds more collectors to the system, thereby

avoiding collector overload.

The health of the Flume system is assessed via two parameters,

computed based on event output rate, event input rate and queue

size. Let α be the percentage of events that leave the system with

respect to the input rate. In our experiment, we set α to be 90, i.e.

the Flume system is considered `healthy’ if 90 percent of events

have been processed by the collectors, µc /(90% × λa)≥1.

Similarly, let β be the maximum percentage of input events that

can wait in any of the queues in the Flume subsystem, i.e., if

β=0.2, then the Flume system is healthy if it is true that 99.8

percent of the events have exited the Flume system, 99.8% × (σa+

σc) /λa ≅ 0. The overall health of Flume is denoted by f:

 (1)

When f ≅1, the flume subsystem is healthy. The auto-scaler’s

health model computes f only after a certain volume of global

queue statistics snapshots has been collected, called a window.

Every new computation of f on a window w initiates a new phase

represented by p. Let xn and xn-1 be the number of collectors in

the Flume system during phases pn and pn-1, respectively. Let xn+1

be the number of collectors required for the next phase pn+1. The

number of collectors to deploy in the Flume system such that f ≅1
after phase pn is the given by:

 ()

 (2)

In order to make this method robust, the following constraints

have also been applied.

 If f(x1)> , then xn+1=xn.

 If xn = xn-1 and f(x1)< , then xn+1=xn+γ, where γ is

a constant

 If f(x1) then xn+1=xn-γ. This step also initiates

scale-down when there is a larger number of

collectors than is needed to handle some volume

of input events.

Auto-scaling is implemented with an instance tuner composed of

a Thrift client in the aggregator node and a Thrift server in the

Flume Master. The Thrift server exposes interfaces to get and set

the required number of collectors in the Flume system. The Flume

Master is responsible for selectively activating and deactivating

collectors when one of the clients sets a new instance count for a

particular flow. The Master has pluggable Translation Managers,

which transform or translate complex logical node configurations

into compositions of simpler source and sink elements.

Flume already supports a Failover Translation manager that

translates certain special source elements into a random list of

collector nodes that are used as failover chains in logical nodes.

These nodes are chosen from a master list of registered collectors.

We have modified the Failover Translation Manager to support

dynamic modification of the master list. The translation manager

registers nodes with source element ‘autoCollectorSource’ into

the master’s collector list. If is the number of collector instances

set by an Instance tuner client, then the translator picks up the first

 collectors from the master collectors list and places it into a

Consistent Hash Table with replication. The key for each collector

is computed based on its hostname and a random index number.

The elements in the hash table are adjusted when the instance

count changes. The sink element ‘autoSink’ is translated into a list

of three collectors chosen from the hash table such that they are

numerically closer to the hostname of the logical node being

configured. Since the elements in the hash table are replicated

with different key values, the data loads on the collectors are

evenly distributed.

4. EXPERIMENTAL EVALUATION
Hoover is evaluated over a Flume system with 50 agents and 10

collectors. Every agent has a load generator program that writes

events of a given size to a set of files in a designated folder at a

given rate. The agents read these files as input events using the

‘TailDir’ source. Agents are configured with ‘AutoBEChain’, a

sink element which automatically switches to a different collector

in case of failure, thus guaranteeing best effort delivery. Collector

nodes are configured to send events to HBase which periodically

writes the events to HDFS. Our setup used 6 HBase region servers

and HDFS data nodes. A single aggregator is used to collect

global statistics for the default flow. Global snapshots are

analyzed by a regression module which predicts the expected

number of collectors using the Secant root finding method to

automatically scale the number of collectors based on the health

of the flume subsystem, computed as explained above. The

intuition behind this method is that when the volume of events

increases, the auto-scaler automatically adds collectors to the

system. The method is not described in detail because for this

paper, our purpose is to demonstrate auto-scaling viability due to

the monitoring and metric analysis capabilities of Project Hoover.

4.1 Aggregation and Round Trip Delays
The average aggregation time within a group is measured by

recording the start time in the local Flume node and storing the

difference between the receive time and start time in every

receiver as part of the group snapshot. The group snapshot also

records the number of local snapshots contained in it. The Round

Trip Time (RTT) is calculated by recording the difference

between the start time of the anycast probe message and the time

when a global snapshot is received.

The following graph shows the average aggregation time and RTT

in milliseconds within a group for a small volume of events, each

of size 100 Bytes, generated at the rate of 1000 events/second. The

scalability of the Pastry network can be verified by the results

from [14]. Every Scribe node has a maximum of 6.2 children for a

Pastry network size of 100,000 nodes. The aggregation time is in

the order of tens of milliseconds. However, our current design

uses a push model by multicasting updates to all members of the

group. Hence, the number of local snapshots contained in a group

snapshot shows some inconsistencies. This can be solved by using

direct messaging instead of a group multicast, where each Flume

node sends its local snapshot to its parent, which is then cascaded

up to the root of the multicast tree [15]. The root can then

multicast the final group snapshot to all other members.

Figure 4. Graph showing the average time taken for Multicast

aggregation and Anycast aggregation.

4.2 Auto-Scaling

In order to evaluate the utility of Project Hoover for online

control, we use if for online Flume auto-scaling, evaluated with

three independent runs with varying numbers of agents and

collectors in the system. The appropriate number of collectors in

the system is calculated in phases, say n. Initially, every flow is

given a single collector to handle all of the agents. Global

snapshots, health scores , current number of collectors

and predicted number of collectors for the next phase are

recorded. The graphs below show that our simple auto-scaler

provides a good approximation for agent and collector

combinations that have high average queue lengths and low health

scores in the initial phases. With this behavior, a system with

lower health scores is scaled much faster than a system with

higher health scores.

Figure 5 shows how the auto-scaler increases the system’s health

scores gradually with varying numbers of agents and collectors.

However, when pursuing a higher health score conflicts with the

goal to also improve throughput, i.e., higher throughput, Project

Hoover's auto-scaler will strike a balance between health score

and system throughput. As shown in the yellow line of Figure 5,

initially the system is regarded as quite healthy with 20 agents and

1 collector,). However, the throughput is

quite low for phase p1, so the auto-scaler increases the number of

collectors even through this then causes a decrease in health.

Figure 5. Graph showing the overall health of the Flume

System at the beginning of every phase.

Figure 6 shows that the auto-scaler balances the average queue

lengths of the system in order to obtain increased throughput.

When new collectors are added to the system, the additional load

will be distributed across a larger number of collectors, so that

events that were previously buffered in the agents and collectors

can be processed more quickly, thereby improving Flume’s

overall health.

Figure 6. Graph showing drastic increase in throughput for

Flume systems with low health scores. The throughput of a

Flume System with good health scores increases gradually.

Figure 7. Graph showing the number of active collectors at

the beginning of every phase. The last reading in the graph

shows the predicted number of collectors for phase p5 to be

added or removed at the end of p4.

Figure 8 shows that the average queue length of the system

decreases as the predicted number of collectors is added to the

system at the end of each phase. The yellow line in Figure 8

shows an increase in queue length at the beginning of phase p3.

This instability is reflected in the overall health of the system at

the beginning of phase p4, as shown in Figure 5. In response, the

auto-scaler adds two more collectors to the system, as shown by

Figure 7. This improves the system’s health and also decreases the

average queue length.

Figure 8. Graph showing that average queue length of the

system at the beginning of every phase.

5. CONCLUSIONS AND FUTURE WORK
Project Hoover is scalable monitoring and aggregation

middleware for event collection and aggregation systems like

Flume. Its utility is demonstrated with methods that automatically

right-scale the number of Flume collectors in the system

depending on evaluations of overall system health. The auto-

scaler models every Flume node as a queue and computes queue

statistics such as average input/output rates and average queue

length.

Project Hoover benefits the Flume log processing system because

it permits the implementation of auto-scaling methods that can

prevent the volume of input logs from overwhelming the

intermediate processing nodes, called ‘collectors’, thereby

maintaining the overall health of the Flume OG. Hoover’s simple

design can be realized in a scalable fashion, without requiring

changes to the applications being used or to underling data center

hardware/software. It has three unique characteristics:

First, Hoover uses a publish/subscribe based multicast and anycast

mechanism deployed separately from the application (i.e., Flume

in this paper), which aggregates local queue statistics to obtain a

global snapshot of those statistics. Separation opens the door to

deploying Hoover with a variety of datacenter codes, which we

will demonstrate in our future work.

Second, Hoover has a dedicated component, called Aggregator,

which periodically polls the members of the flow using anycast

messages and gathers global snapshot data. Performance

evaluations measuring aggregation delays within a group and

across groups show that the approach is scalable for large group

sizes.

Hoover’s framework is fully implemented, but additional work is

required to better predict the number of active collectors for

varying loads. This includes (1) analyzing the distribution of real

live logs generation, e.g., Poisson or Normal distributions, and

simulating it with a log generator; (2) mature queuing theory can

be employed for better predicting the number of collectors; (3)

additional methods are needed for load balancing collectors,

particularly when they perform computationally expensive tasks.

6. REFERENCES
[1] Amazon Cloudwatch. http://aws.amazon.com/cloudwatch/.

[2] Cloudera Flume. https://github.com/cloudera/flume/.

[3] Facebook Scribe. https://github.com/facebook/scribe/.

[4] Ganglia Monitoring System. http://ganglia.sourceforge.net/.

[5] HBase. http://hbase.apache.org/.

[6] HDFS. http://hadoop.apache.org/hdfs/.

[7] Jolokia. http://www.jolokia.org/.

[8] Java Management Extensions (JMX) Technology.

http://www.oracle.com/technetwork/java/javase/tech/javama

nagement-140525.html/.

[9] Remote Method Invocation.

http://www.oracle.com/technetwork/java/javase/tech/index-

jsp-136424.html/.

[10] J. Boulon, A. Konwinski, R. Qi, A. Rabkin, E. Yang, and M.

Yang. Chukwa: A Large Scale Monitoring System. Cloud

Computing And Its Applications, 2008.

[11] M. Castro, P. Druschel, A-M. Kermarrec and A. Rowstron,

SCRIBE: A large-scale and decentralised application-level

multicast infrastructure, IEEE Journal on Selected Areas in

Communication (JSAC), Vol. 20, No, 8, October 2002.

[12] L. Hu, K. D. Ryu, D. D. Silva, K. Schwan. v-Bundle:

Flexible Resource Offerings in Clouds. In Proceedings of

the 32nd IEEE ICDCS Conference, Macau, China, June

2012.

[13] J. Kreps, N. Narkhede, J. Rao. Kafka: A Distributed

Messaging System for Log Processing. NetDB workshop,

2011.

[14] A. Rowstron and P. Druschel. Pastry: Scalable, distributed

object location and routing for large-scale peer-to-peer

systems. IFIP/ACM International Conference on Distributed

Systems Platforms (Middleware), Heidelberg, Germany,

pages 329-350, November, 2001.

[15] C. Wang, K. Schwan, V. Talwar, G. Eisenhauer, L. Hu, M.

Wolf. "A Flexible Architecture Integrating Monitoring and

Analytics for Managing Large-Scale Data Centers." In

Proceedings of the 8th International Conference on

Autonomic Computing (ICAC 2011), June, 2011.

http://www.acm.org/sigcomm/sigcomm2010/
http://www.acm.org/sigcomm/sigcomm2010/

