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ABSTRACT 

Real-time data processing frameworks like S4 and Flume have 

become scalable and reliable solutions for acquiring, moving, and 

processing voluminous amounts of data continuously produced by 

large numbers of online sources. Yet these frameworks lack the 

elasticity to horizontally scale-up or scale-down their based on 

current rates of input events and desired event processing 

latencies. The Project Hoover middleware provides distributed 

methods for measuring, aggregating, and analyzing the 

performance of distributed Flume components, thereby enabling 

online configuration changes to meet varying processing 

demands. Experimental evaluations with a sample Flume data 

processing code show Hoover’s approach to be capable of 

dynamically and continuously monitoring Flume performance, 

demonstrating that such data can be used to right-size the number 

of Flume collectors according to different log production rates.  

Categories and Subject Descriptors 
D.4.1 [Operating Systems]: Process Management – scheduling; 

D.4.7 [Operating Systems]: Organization and Design – 

distributed systems.  

General Terms 
Management, Performance, Design, Experimentation. 

Keywords 

Flume OG, Pastry, Scribe, Queuing Model. 

1. INTRODUCTION 
Web 2.0 companies like Facebook, Yahoo, LinkedIn, and Twitter 

generate large amounts of log data, including (1) user activity 

events like clicks, comments, or sharing, (2) operational metrics 

like call latency and errors, and (3) system metrics like CPU, 

memory, and network utilization. Such data is invaluable for 

debugging, performance management, and for commercial 

reasons. Consider for instance, an e-commerce website that 

collects logs to monitor the number of users who are currently 

viewing a particular product. Using this data, the company can 

increase sales by running micro-promotions that offer, say “20% 

off”, if more than 5000 users are currently viewing the same 

product. 

Recent years have seen the development of distributed log 

aggregators specialized for collecting and processing online log 

data, such as Facebook's Scribe [3], Yahoo's Chukwa [10], and 

Cloudera's Flume [2]. These systems convert log entries into 

events, which are then aggregated and processed by distributed 

sets of agents in multi-tier frameworks backed by key-value stores 

like HBase [5] and distributed file systems like HDFS [6].  

Online log aggregators face challenges. First, their processing 

capabilities should be horizontally scalable -- up or down -- based 

on current volumes of input logs. Such elasticity is important 

because events will be delayed or even lost if the aggregate 

consumption rate of intermediate processing nodes, called 

`collectors’ in Flume, cannot keep pace with the rate at which log 

events are produced. Second, there is a need for load balancing 

across different sets of collectors, when log input rates are not 

evenly distributed across the system’s many sources. Third, such 

elasticity must function at volumes up to the few billion messages 

a day, as companies like Facebook collect everything from access 

logs, to performance statistics, to actions going to its News Feed. 

At these scales, however, the online monitoring required for 

elasticity at this scale is challenging, particularly for current 

commercial approaches that expose metrics through JMX MBeans 

[8], where each MBean’s attributes and operations are externally 

accessed through RMI [9]. RMI does not perform well at large 

scale due to the overheads of its registration logic, serialization, 

and its slow failure detection and cleanup. Recent solutions like 

Jolokia [7] address this by exposing MBeans over HTTP, 

Cloudera's Flume allows users to gather node metrics via HTTP or 

by injecting them as a separate data flow along with the data being 

processed. However, those additional data flows add unmanaged 

overhead to the streaming data processing subsystem. Finally, 

research approaches like those described in [15] constitute 

potential solutions, but have not yet been deployed in commercial 

settings. 

To enable auto-scaling online web log processing systems, we 

present Project Hoover, which is middleware that addresses the 

above monitoring challenges by integrating the Pastry/Scribe 

multicast framework [14] [11] with Cloudera's Flume log 

processing system. 

Novel approach to online metrics gathering. Rather than using an 

additional internal data flow to gather metrics, Hoover creates a 

separable external channel to export metrics to an `aggregator’ 

that operates alongside Flume’s central management master used 

for dynamic reconfiguration of Flume components. This is 

implemented via a light-weight group communication and event 

notification system (Scribe) built on a peer-to-peer overlay 

(Pastry). 

Online assessment of Flume component `health’ enables auto-

scaling. The aggregator uses dynamically collected metrics to 

assess operational characteristics of the Flume application’s 

execution. Specifically, this paper demonstrates the use of such 

metric data to model Flume components as a network of queues 

and measuring variables like average input rates, output rates, 

queue lengths, etc. This information is then used to auto-scale 

Flume to  match its aggregate processing capacity to dynamically 

changing log input rates, to maintain desired end-to-end 

processing latencies.  

 

Performance measurements demonstrate the efficiency of 

Hoover’s online monitoring and analysis, as well as its utility for 



adjusting Flume performance to current conditions and needs. 

Specifically, they show only a small increase in anycast round-trip 

times as the number of nodes in the Pastry-based monitoring 

overlay increases. Further, because the average aggregation time 

per node is only on the order of tens of milliseconds, it is possible 

to aggregate statistics from a large number of nodes within time 

intervals of only a few minutes. Consequently enabled scale-

up/down is shown useful via a simple auto-scaler implemented 

based on a Secant root finding method. It predicts the number of 

collectors required to maintain the health of the Flume system, by 

providing a good approximation for Flume configurations with 

high average queue lengths and low health scores. 

The remainder of this paper is organized as follows. Section 2 

discusses background and related work. Section 3 describes 

Hoover‘s design. Section 4 evaluates Hoover with experiments. 

We conclude with directions for future work in Section 5. 

2. BACKGROUND AND RELATED WORK 
We first explain the design pattern for today’s multi-tier log 

processing systems like Flume. We then discuss related literature. 

2.1 BACKGROUND 
Flume is a distributed service for collecting and processing large 

amounts of log data generated by clients, ultimately placed into 

some persistent store for later use. Figure 1 shows a typical 

deployment of Flume comprised of three tiers: (1) the agent tier 

generates events from client logs; (2) collectors aggregate events 

from separate data logs and forward them to (3) the storage tier 

comprised of HBASE and the Hadoop Distributed File System 

(HDFS).  

Every node in Flume has a source and a sink. The source tells it 

where to collect data, while the sink tells it where to send the data. 

A separate process, called the Flume master, is the central 

management point; it directs data flows by assigning source/sink 

configurations to all nodes, and it communicates dynamic 

configuration updates. Sinks can additionally be configured with 

`decorators’ that perform simple processing on data. For example, 

network throughput can be increased by batching events and then 

compressing them before moving them to the sink. 
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Figure 1. Architecture of the Flume System. 

2.2 RELATED WORK 
Facebook’s Scribe [3] and Yahoo’s Chukwa [10] gather logs 

based on the “push” model. Scribe uses local servers running on 

each node, in order to aggregate online logs and send them to a 

central collector (or to multiple collectors). Yahoo’s Chukwa is 

built on top of the Hadoop distributed file system and the 

MapReduce framework. It uses a push model in which each 

frontend node sends logs to a set of collectors over sockets. The 

collectors write log entries to HDFS. LinkedIn’s Kafka [13] 

gathers logs based on a “pull” model. A stream of messages of a 

particular type is defined by a topic, and a producer can publish 

messages to a topic. The published messages are then stored at a 

set of servers called brokers, which periodically write data into 

HDFS.   

The systems outlined above facilitate reliable, scalable, efficient, 

and time critical aggregation and storage of live data. However, 

we are not aware of their ability to auto-scale their numbers of 

collectors based on log volume changes or workload imbalance. 

This will result in variable latencies in moving log data and raises 

the possibility of data loss and failure of collectors when they are 

overwhelmed.  

Existing commercial log monitoring systems expose a limited set 

of metrics through JMX MBeans [8], where metric collection 

typically involves injecting JMX metrics into systems like 

Ganglia [4], Amazon CloudWatch [1], etc. Ganglia has been used 

at large scale to collect summary operational statistics in grids and 

clusters. However, its membership management uses native IP 

Multicast to communicate with its peer nodes, which is not 

appropriate for scale-out datacenter systems in which components 

join and leave frequently. Preferable would be lighter weight 

solutions with on-the-fly deployment and simple membership 

management. 

Amazon’s CloudWatch provides a generic and comprehensive 

solution for monitoring resources, applications, and services. It 

monitors metrics generated by a customer’s applications, and it 

provides system-wide visibility into resource utilization, 

application performance, and operational health. However, its 

closed source nature restricts its use to Amazon web services and 

its cloud resources. 

Project Hoover provides a simple way to collect metrics about the 

operational behavior of stream processing systems like those 

constructed with Flume. Specifically, we use Scribe and Pastry, 

which jointly provide efficient request reply routing and fault-

recovery and can quickly adapt to the arrival and departure of 

nodes. Statistics from different flow paths are aggregated by 

publishing them in dedicated topics supported by Scribe, thus 

using its “push” model to gather statistics from nodes in each tier 

of the system. It then uses a “pull” model to aggregate the 

gathered statistics to form a global snapshot of the overall system. 

An external `aggregator’ uses aggregate information to run 

models like those that evaluate and/or predict log traffic to adjust 

the number of collector machines in the system. 

3. HOOVER’S DESIGN 
As shown in Figure 2, the Project Hoover middleware has four 

main elements. They are (1) monitoring of local statistics for each 

agent and collector, (2) separately summarizing/publishing 

statistics within the agent group and the collector group, (3) 

merging the summarized statistics of two groups and sending it to 

an external aggregator using a Scribe anycast message, and (4) the 

ability to run online models that use summary statistics to 

dynamically tune the number of collectors in the system.  

3.1 Local Node Metric Collection 
Hoover models every node in the Flume system as an individual 

queue, and then, agents and collectors belonging to a particular 

data flow form a network of queues. Flume nodes expose three 

queue variables: input rate, output rate, and queue length. 

However, Flume’s implementations of source and sink elements 

do not have built-in queues, thus requiring Hoover metric 

collection to emulate them, as explained next.  



Flume’s ‘tail’ source reads a single line from a file and converts it 

into an event. The events are then pushed out of a sink element. 

We interpret the number of lines read per unit time as the input 

rate of the queue; the number of lines that exit the sink per unit 

time is the output rate of the queue; and the average difference 

between the number of lines read and the number of events that 

exit the sink per unit time is the length of the queue.  
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Figure 2. Architecture of Hoover. 

Source and sink elements in logical nodes expose a Reporting 

object, which provides generic methods to add queue variables 

and other metrics as key-value pairs. The Reporting objects from 

the source and sink are refreshed during every heartbeat interval. 

Logical nodes then compute the Exponential Moving Average 

(EMA) of reporting objects to form a local snapshot. For other log 

processing systems, there may be alternative methods for defining 

queue variables. Hoover’s performance modeling and auto-scaling 

methods will apply as long as such methods can be defined. 

3.2 Local Metrics Aggregation 
Hoover obtains scalability and fault tolerance by using Scribe as 

the communication substrate to exchange Flume metrics. Scribe is 

an application-level group communication system built upon 

Pastry, a DHT-based P2P overlay. Each pastry node is assigned a 

nodeId based on its IP address. Pastry routes messages to a given 

node by forwarding them to another node with nodeId 

numerically closest to the destination node. Every node maintains 

a small routing table with          entries, which implies that 

Pastry can route messages in          hops. Scribe nodes create 

and subscribe to multicast groups, called Topics. Subscribed 

members can publish messages to a topic, which will then be 

distributed in a multicast tree to all subscribed nodes. The root 

node of the multicast tree is the pastry node with nodeId closest to 

the topic name. A new node can subscribe to the topic by 

computing the key from the topic name and then using Pastry to 

route a subscribe message to the topic towards the root node. 

When a Pastry node receives a subscribe message from another 

node, it adds the node ID to its list of children and begins acting 

as a forwarder of the topic. If the Pastry node is already a member 

of the same group, it stops forwarding the subscribe message. 

Fault tolerance is achieved via timeouts and keep-alive messages. 

Specifically, if a child does not hear from its parent for some 

timeout period, it sends a new subscribe message to the root and is 

spliced to the multicast tree. When the parent does not hear from 

its child, it removes that node from its list of children. Scribe 

overcomes root node failure by moving it to the Pastry node with 

the next numerically closest nodeId to the key computed from the 

topic name. 

Hoover uses Scribe multicast trees for Flume agents and 

collectors to aggregate and summarize their local snapshots. 

Every logical node spawns an instance of a Pastry node and a 

custom Scribe client application [12]. Local snapshots from 

agents and collectors are collected to calculate a group snapshot 

that contains the group’s average input rate, average output rate, 

and average queue length. We create two aggregation trees, rooted 

at two rendezvous points, to disseminate local snapshots to other 

members. These two trees are the “AGENT” tree and the 

“COLLECTOR” tree. Agents subscribe to the “AGENT” tree, 

while collectors subscribe to the “COLLECTOR” tree.  

As shown in Figure 3, each node has in its local snapshot local 

statistics stored as a set of (attributeName, value) pairs, such as 

(InputRate, 10). Periodically, each agent node triggers a multicast 

message and passes its local snapshot to every other node in the 

"AGENT" group. Other nodes save others' values in their 

respective caches. The same actions are taken by collectors. Over 

some slightly longer period of time, once one collector receives 

results from the "AGENT" group, it will combine them with the 

average of its caches and sends the final global snapshot to the 

external global aggregator.  

If    is the interval of time after which agents and collectors 

publish their local snapshots to other members of their respective 

Scribe groups, then the local snapshots contain the EMA of the 

queue variables between times    and    . Each logical node 

resets its local snapshot and multicasts it to other members of the 

same Scribe group. Once all nodes have finished multicasting 

their respective local snapshots, every node now contains an in-

memory cache of local snapshots of all members in its group. 

From this snapshot, it can then compute the average input rate, 

average output rate, and average queue length for the group, to 

form a group snapshot. By simply replicating that snapshot to all 

other group members, the same snapshot data is now available to 

all group members, regardless of node failures or removals. 
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Figure 3. Local Metrics Aggregation Trees. 



3.3 Global Metrics Exchange 
Once the group snapshots have been computed by the agent and 

collector groups, they should be analyzed globally to determine 

the overall health of Flume components. Toward this end, the 

group snapshots from both the agent and collector groups are 

merged to give a single update vector of queue variables for the 

entire network of queues, called the global snapshot. The global 

snapshot is then passed to a regression model, which in turn uses 

them to predict the number of collectors required to handle the 

current aggregate volume of data. 

We employ an independent node, called the aggregator, which is 

separated from the Flume system, to combine metrics and perform 

prediction. For example, let m and n be the number of agents and 

collectors in a data flow when it is polled at time   . Let the local 

queue statistics of every node be < λ, µ, σ >, where λ, µ, and σ is 

the average input rate, average output rate, and average queue 

length of that node between two successive polling,        .  

The group snapshot of agent nodes is < λa, µa, σa >, where 

    ∑   
 
 ,    ∑    

 
 and     ∑   

 
  ⁄ . Similarly, the 

group snapshot of collector nodes is < λc, µc, σc >, where    
∑   

 
 ,   ∑   

 
         ∑   

 
  ⁄ . The merged global snapshot 

sent to the aggregator is < λa, µc, σa+ σc >. The snapshot of every 

logical node is adjusted to the configured polling period p by 

linear interpolation or extrapolation, if the gap between two 

successive polling times,           . 

A global metrics exchange is initiated using a single pull 

operation, which sends an anycast message to the agent group. 

One of the agents receives the anycast message and computes the 

group snapshot from its in-memory cache. The agent group 

snapshot is then anycasted to the collector group. One of the 

collectors computes its group snapshot and merges it with the 

agent group snapshot to form the global snapshot of the entire 

queuing network, and it then sends another anycast message to the 

aggregator with the global snapshot. Using anycast permits the 

aggregator to remain agnostic of Flume node failures and 

reconfiguration, reduces overall scribe message traffic, and avoids 

the need for procedures that manage global metric aggregation in 

lieu of node failures (e.g., assigning coordinators, dealing with 

failover, etc.). 

3.4 Dynamic Instance Tuning 
The aggregator applies the global snapshot collected during every 

polling period to a statistical analysis model used for auto-scaling.  

The experiments reported in this paper use the Secant root finding 

method to automatically scale the number of collectors based on 

the current health of the Flume subsystem. The intuition behind 

this method is that when the volume of events increases, the auto-

scaler automatically adds more collectors to the system, thereby 

avoiding collector overload. 

The health of the Flume system is assessed via two parameters, 

computed based on event output rate, event input rate and queue 

size. Let α be the percentage of events that leave the system with 

respect to the input rate. In our experiment, we set α to be 90, i.e. 

the Flume system is considered `healthy’ if 90 percent of events 

have been processed by the collectors, µc /(90% × λa )≥1. 

Similarly, let β be the maximum percentage of input events that 

can wait in any of the queues in the Flume subsystem, i.e., if 

β=0.2, then the Flume system is healthy if it is true that 99.8 

percent of the events have exited the Flume system, 99.8% × (σa+ 

σc) /λa ≅ 0.  The overall health of Flume is denoted by f: 

 

   
  

         
 

                 

  
   (1) 

 

When f ≅1, the flume subsystem is healthy. The auto-scaler’s 

health model computes f only after a certain volume of global 

queue statistics snapshots has been collected, called a window. 

Every new computation of f on a window w initiates a new phase 

represented by p.  Let xn and xn-1 be the number of collectors in 

the Flume system during phases pn and pn-1, respectively. Let xn+1 

be the number of collectors required for the next phase pn+1. The 

number of collectors to deploy in the Flume system such that f ≅1 
after phase pn is the given by: 

 

         (       )  
       

             
  (2) 

  

In order to make this method robust, the following constraints 

have also been applied. 

 If f(x1)>  , then xn+1=xn. 

 If xn = xn-1 and f(x1)<  , then xn+1=xn+γ, where γ is 

a constant 

 If f(x1)    then xn+1=xn-γ. This step also initiates 

scale-down when there is a larger number of 

collectors than is needed to handle some volume 

of input events. 

 
Auto-scaling is implemented with an instance tuner composed of 

a Thrift client in the aggregator node and a Thrift server in the 

Flume Master. The Thrift server exposes interfaces to get and set 

the required number of collectors in the Flume system. The Flume 

Master is responsible for selectively activating and deactivating 

collectors when one of the clients sets a new instance count for a 

particular flow. The Master has pluggable Translation Managers, 

which transform or translate complex logical node configurations 

into compositions of simpler source and sink elements.  

Flume already supports a Failover Translation manager that 

translates certain special source elements into a random list of 

collector nodes that are used as failover chains in logical nodes. 

These nodes are chosen from a master list of registered collectors. 

We have modified the Failover Translation Manager to support 

dynamic modification of the master list. The translation manager 

registers nodes with source element ‘autoCollectorSource’ into 

the master’s collector list. If   is the number of collector instances 

set by an Instance tuner client, then the translator picks up the first 

  collectors from the master collectors list and places it into a 

Consistent Hash Table with replication. The key for each collector 

is computed based on its hostname and a random index number. 

The elements in the hash table are adjusted when the instance 

count changes. The sink element ‘autoSink’ is translated into a list 

of three collectors chosen from the hash table such that they are 

numerically closer to the hostname of the logical node being 

configured. Since the elements in the hash table are replicated 

with different key values, the data loads on the collectors are 

evenly distributed. 

4. EXPERIMENTAL EVALUATION 
Hoover is evaluated over a Flume system with 50 agents and 10 

collectors. Every agent has a load generator program that writes 

events of a given size to a set of files in a designated folder at a 

given rate. The agents read these files as input events using the 

‘TailDir’ source. Agents are configured with ‘AutoBEChain’, a 



sink element which automatically switches to a different collector 

in case of failure, thus guaranteeing best effort delivery. Collector 

nodes are configured to send events to HBase which periodically 

writes the events to HDFS. Our setup used 6 HBase region servers 

and HDFS data nodes. A single aggregator is used to collect 

global statistics for the default flow. Global snapshots are 

analyzed by a regression module which predicts the expected 

number of collectors using the Secant root finding method to 

automatically scale the number of collectors based on the health 

of the flume subsystem, computed as explained above. The 

intuition behind this method is that when the volume of events 

increases, the auto-scaler automatically adds collectors to the 

system. The method is not described in detail because for this 

paper, our purpose is to demonstrate auto-scaling viability due to 

the monitoring and metric analysis capabilities of Project Hoover. 

4.1 Aggregation and Round Trip Delays 
The average aggregation time within a group is measured by 

recording the start time in the local Flume node and storing the 

difference between the receive time and start time in every 

receiver as part of the group snapshot. The group snapshot also 

records the number of local snapshots contained in it. The Round 

Trip Time (RTT) is calculated by recording the difference 

between the start time of the anycast probe message and the time 

when a global snapshot is received.   

The following graph shows the average aggregation time and RTT 

in milliseconds within a group for a small volume of events, each 

of size 100 Bytes, generated at the rate of 1000 events/second. The 

scalability of the Pastry network can be verified by the results 

from [14]. Every Scribe node has a maximum of 6.2 children for a 

Pastry network size of 100,000 nodes. The aggregation time is in 

the order of tens of milliseconds. However, our current design 

uses a push model by multicasting updates to all members of the 

group. Hence, the number of local snapshots contained in a group 

snapshot shows some inconsistencies. This can be solved by using 

direct messaging instead of a group multicast, where each Flume 

node sends its local snapshot to its parent, which is then cascaded 

up to the root of the multicast tree [15]. The root can then 

multicast the final group snapshot to all other members.  

 

 

Figure 4. Graph showing the average time taken for Multicast 

aggregation and Anycast aggregation. 

 

4.2 Auto-Scaling 

In order to evaluate the utility of Project Hoover for online 

control, we use if for online Flume auto-scaling, evaluated with 

three independent runs with varying numbers of agents and 

collectors in the system. The appropriate number of collectors in 

the system is calculated in phases, say n. Initially, every flow is 

given a single collector to handle all of the agents. Global 

snapshots, health scores      , current number of collectors    

and predicted number of collectors      for the next phase are 

recorded. The graphs below show that our simple auto-scaler 

provides a good approximation for agent and collector 

combinations that have high average queue lengths and low health 

scores in the initial phases. With this behavior, a system with 

lower health scores is scaled much faster than a system with 

higher health scores.  

Figure 5 shows how the auto-scaler increases the system’s health 

scores gradually with varying numbers of agents and collectors. 

However, when pursuing a higher health score conflicts with the 

goal to also improve throughput, i.e., higher throughput, Project 

Hoover's auto-scaler will strike a balance between health score 

and system throughput. As shown in the yellow line of Figure 5, 

initially the system is regarded as quite healthy with 20 agents and 

1 collector,                 ). However, the throughput is 

quite low for phase p1, so the auto-scaler increases the number of 

collectors even through this then causes a decrease in health. 

 

Figure 5. Graph showing the overall health of the Flume 

System at the beginning of every phase. 

 

Figure 6 shows that the auto-scaler balances the average queue 

lengths of the system in order to obtain increased throughput. 

When new collectors are added to the system, the additional load 

will be distributed across a larger number of collectors, so that 

events that were previously buffered in the agents and collectors 

can be processed more quickly, thereby improving Flume’s 

overall health. 

 

Figure 6. Graph showing drastic increase in throughput for 

Flume systems with low health scores. The throughput of a 

Flume System with good health scores increases gradually. 



 

Figure 7. Graph showing the number of active collectors at 

the beginning of every phase. The last reading in the graph 

shows the predicted number of collectors for phase p5 to be 

added or removed at the end of p4. 

 

Figure 8 shows that the average queue length of the system 

decreases as the predicted number of collectors is added to the 

system at the end of each phase. The yellow line in Figure 8 

shows an increase in queue length at the beginning of phase p3. 

This instability is reflected in the overall health of the system at 

the beginning of phase p4, as shown in Figure 5. In response, the 

auto-scaler adds two more collectors to the system, as shown by 

Figure 7. This improves the system’s health and also decreases the 

average queue length. 

 

Figure 8. Graph showing that average queue length of the 

system at the beginning of every phase. 

 

5. CONCLUSIONS AND FUTURE WORK 
Project Hoover is scalable monitoring and aggregation 

middleware for event collection and aggregation systems like 

Flume. Its utility is demonstrated with methods that automatically 

right-scale the number of Flume collectors in the system 

depending on evaluations of overall system health. The auto-

scaler models every Flume node as a queue and computes queue 

statistics such as average input/output rates and average queue 

length. 

Project Hoover benefits the Flume log processing system because 

it permits the implementation of auto-scaling methods that can 

prevent the volume of input logs from overwhelming the 

intermediate processing nodes, called ‘collectors’, thereby 

maintaining the overall health of the Flume OG.  Hoover’s simple 

design can be realized in a scalable fashion, without requiring 

changes to the applications being used or to underling data center 

hardware/software. It has three unique characteristics:  

First, Hoover uses a publish/subscribe based multicast and anycast 

mechanism deployed separately from the application (i.e., Flume 

in this paper), which aggregates local queue statistics to obtain a 

global snapshot of those statistics. Separation opens the door to 

deploying Hoover with a variety of datacenter codes, which we 

will demonstrate in our future work. 

Second, Hoover has a dedicated component, called Aggregator, 

which periodically polls the members of the flow using anycast 

messages and gathers global snapshot data. Performance 

evaluations measuring aggregation delays within a group and 

across groups show that the approach is scalable for large group 

sizes.   

Hoover’s framework is fully implemented, but additional work is 

required to better predict the number of active collectors for 

varying loads. This includes (1) analyzing the distribution of real 

live logs generation, e.g., Poisson or Normal distributions, and 

simulating it with a log generator; (2) mature queuing theory can 

be employed for better predicting the number of collectors; (3) 

additional methods are needed for load balancing collectors, 

particularly when they perform computationally expensive tasks.  

6. REFERENCES 
[1] Amazon Cloudwatch. http://aws.amazon.com/cloudwatch/.  

[2] Cloudera Flume. https://github.com/cloudera/flume/. 

[3] Facebook Scribe. https://github.com/facebook/scribe/. 

[4] Ganglia Monitoring System. http://ganglia.sourceforge.net/. 

[5] HBase. http://hbase.apache.org/. 

[6] HDFS. http://hadoop.apache.org/hdfs/. 

[7] Jolokia. http://www.jolokia.org/. 

[8] Java Management Extensions (JMX) Technology.  

http://www.oracle.com/technetwork/java/javase/tech/javama

nagement-140525.html/. 

[9] Remote Method Invocation.  

http://www.oracle.com/technetwork/java/javase/tech/index-

jsp-136424.html/. 

[10] J. Boulon, A. Konwinski, R. Qi, A. Rabkin, E. Yang, and M. 

Yang. Chukwa: A Large Scale Monitoring System. Cloud 

Computing And Its Applications, 2008. 

[11] M. Castro, P. Druschel, A-M. Kermarrec  and A. Rowstron, 

SCRIBE: A large-scale and decentralised application-level 

multicast infrastructure, IEEE Journal on Selected Areas in 

Communication (JSAC), Vol. 20, No, 8, October 2002. 

[12] L. Hu, K. D. Ryu, D. D. Silva, K. Schwan. v-Bundle: 

Flexible Resource Offerings in Clouds.  In Proceedings of 

the 32nd IEEE ICDCS Conference, Macau, China, June 

2012. 

[13] J. Kreps, N. Narkhede, J. Rao. Kafka: A Distributed 

Messaging System for Log Processing. NetDB workshop, 

2011. 

[14] A. Rowstron and P. Druschel. Pastry: Scalable, distributed 

object location and routing for large-scale peer-to-peer 

systems. IFIP/ACM International Conference on Distributed 

Systems Platforms (Middleware), Heidelberg, Germany, 

pages 329-350, November, 2001. 

[15] C. Wang, K. Schwan, V. Talwar, G. Eisenhauer, L. Hu, M. 

Wolf. "A Flexible Architecture Integrating Monitoring and 

Analytics for Managing Large-Scale Data Centers." In 

Proceedings of the 8th International Conference on 

Autonomic Computing (ICAC 2011), June, 2011. 

 

http://www.acm.org/sigcomm/sigcomm2010/
http://www.acm.org/sigcomm/sigcomm2010/


 


