
Economical and Robust Provisioning of N -Tier Cloud Workloads: A Multi-level
Control Approach

Pengcheng Xiong †1, Zhikui Wang ‡2, Simon Malkowski †3,Qingyang Wang †4, Deepal Jayasinghe †5, Calton Pu †6
†College of Computing, Georgia Institute of Technology

266 Ferst Dr., Atlanta, GA 30332, USA
1,3,4,5,6{pxiong3,zmon,qywang,deepal,calton}@cc.gatech.edu

‡Hewlett Packard Laboratories
Palo Alto, CA 94304 USA
2zhikui.wang@hp.com

Abstract—Resource provisioning for N -tier web applications
in Clouds is non-trivial due to at least two reasons. First, there
is an inherent optimization conflict between cost of resources
and Service Level Agreement (SLA) compliance. Second, the re-
source demands of the multiple tiers can be different from each
other, and varying along with the time. Resources have to be
allocated to multiple (virtual) containers to minimize the total
amount of resources while meeting the end-to-end performance
requirements for the application. In this paper we address
these two challenges through the combination of the resource
controllers on both application and container levels. On the
application level, a decision maker (i.e., an adaptive feedback
controller) determines the total budget of the resources that
are required for the application to meet SLA requirements as
the workload varies. On the container level, a second controller
partitions the total resource budget among the components of
the applications to optimize the application performance (i.e.,
to minimize the round trip time). We evaluated our method
with three different workload models—open, closed, and semi-
open—that were implemented in the RUBiS web application
benchmark. Our evaluation indicates two major advantages of
our method in comparison to previous approaches. First, fewer
resources are provisioned to the applications to achieve the
same performance. Second, our approach is robust enough to
address various types of workloads with time-varying resource
demand without reconfiguration.

Keywords-N -tier web application; Cloud computing; service
level agreement; adaptive control

I. INTRODUCTION

Clouds describe a new supplement, consumption, and de-
livery model for IT web services by providing dynamically
scalable and often virtualized resources as a service over
the Internet [1]. The Cloud providers offer infrastructure
resources and computing capabilities as commodities to the
users. In this way, the Cloud computing paradigm provides
a range of attractive features such as resource elasticity,
cost efficiency, and ease of management. Moreover, it also
compels the rethinking of economic relationships between
the provider and the users based on cost and performance
of the services.

Platform-as-a-Service (PaaS) is one of the most significant
components of the Cloud computing paradigm. On one
hand, the PaaS providers’ revenues are determined through
the delivery of client request service under Service-Level
Agreements (SLAs). The actual revenue model depends
on the chosen performance metrics (e.g., round trip time,
availability, bandwidth, or throughput) and the statistics
defined on them. On the other hand, the PaaS providers
may rent their resources from Infrastructure-as-a-Service
(IaaS) providers in order to offer their service. Computing
resources are regarded as services and billed similarly to
other commodities. 1 Hence, from a PaaS provider point of
view, the profit is determined based on two factors: quality
of service and resource expenditures.

Figure 1. Applications in a typical Cloud environment

Consider the illustration in Figure 1 for example. Several
client applications are deployed in the Cloud. Applications
A and B are single-tiered. Application A only contains a

1For instance, the cost of a “small instance” with 1.7 GB of memory, 1
EC2 Compute Unit (1 virtual core with 1 EC2 Compute Unit), 160 GB of
local instance storage and 32-bit platform, on Amazon’s Elastic Compute
Cloud (EC2) [2] is $0.085 per hour.

Tomcat server and Application B only contains an Apache
web server. Applications C and D are multi-tiered (e.g., a
typical RUBiS benchmark application configuration includes
at least three server tiers). As the multi-tier architecture
shows the fastest adoption rate in the Cloud environment,
we focus on economical and robust resource provisioning
for N -tier Cloud workloads in this study.

For a single-tiered application, a feedback controller can
be used to allocate resources based on the current system
status and the time-varying workload in order to meet
SLA [3]. For example, if SLA is a function of round trip
time and resources are rented based on CPU time, then a
feedback controller can be built to achieve minimal-cost
rental (e.g., from an IaaS providers) of CPU resource while
maintaining a sufficiently low round trip time level under
the time-varying workload.

Compared with a single-tiered application, the decision
to allocate resources is not straightforward for an N -tier
application as each tier can have different levels of resource
demand and contribute different amount from each other to
the end-to-end response time. For instance, the application
tier usually has much higher CPU demand than the other
tiers, while the database tier can need much more mem-
ory and disk I/O bandwidth. If an inappropriate resource-
partitioning scheme is adopted, e.g., to allocate too much
CPU for those disk I/O intensive tiers, it will only waste the
resource budget. Therefore, for a given total resource budget
of an N -tier web application that can meet the end-to-end
performance threshold, there exists degrees of freedom to
partition the resource budget among the individual tiers.
Well-designed partitioning scheme can achieve the best
performance for the given total resource budget, or minimize
the total resource cost without compromising the end-to-end
performance.

We propose in this paper an SLA-based control method
for both economical and robust resource provisioning for
N -tier web applications.

First, we model an open N -tier web application as a
tandem queue, which consists of several queuing systems
in series. The Round Trip Time (RTT) for each tier is
estimated through an M/G/1/PS queue. We show that under
a given total CPU budget, the optimal partitioning which
minimizes the RTT , can be calculated based on offline
models for open workloads and online measurement. Such
a partitioning scheme can be used by the PaaS provider
to economically operate the service. We also test the op-
timal partitioning method against closed/semi-open N -tier
web applications, which shows that the optimal partition-
ing scheme is robust enough w.r.t. the workload models.
Although closed/semi-open N -tier web application cannot
be modeled as M/G/1/PS queue, the optimal partitioning
scheme still outperforms other approaches described in pre-
vious works, e.g., “Equal Shares” and “Equal Utilization”.

Second, we propose a two-level control architecture for

optimal resource allocation for N -tier web applications. In
the application level, an adaptive feedback controller is ap-
plied to decide the total resource demand of the application
in real time to maintain the RTT threshold upon varying
workload. At the container level, an optimal controller
partitions the total resource budget among the multiple tiers
that can minimize the end-to-end response time. The two
controllers work together to achieve the optimal resource
allocation for the application.

Through experiments, we show that, the performance
controller with the optimal partition scheme can achieve at
least the same performance as a couple of other schemes,
e.g., ‘Equal Shares” and “Equal Utilization”, while use up to
20% less resources. We also test the two level performance
controller with both open and closed N -tier web applications
to show the robustness of our approach.

The rest of the paper is organized as follows. Section II
outlines our experimental setup and the system architecture.
In Section III, we model the N -tier system as a tandem
queue and propose an optimal resource partitioning method
which is evaluated in Section IV. In Section V, we explore
the relationship between the total resource and the mean
round trip time and design an application controller. The
performance controller which integrates the application con-
troller and the resource partitioning method is evaluated in
Section VI. Related works are summarized in Section VII
before Section VIII which concludes the paper.

II. BACKGROUND AND SYSTEM ARCHITECTURE

In this section, we first discuss the service level agree-
ments (SLAs) that we use in the paper. Then we give a high-
level description of the test bed and three types of workload
generators for our experimental studies. Finally, we describe
the control system architecture that we use throughout the
paper.

A. Service Level Agreements

Service level agreements (SLAs) are contracts between
a service provider and its clients. SLAs in general depend
on certain chosen criteria, such as latency, reliability, avail-
ability, throughput and security. In this paper, we focus on
end-to-end latency, or round trip time. Although SLA cost
function may have various shapes, we believe that a staircase
function is a natural choice used in the real-world contracts
as it is easy to describe in natural language [4]. We use a
single step function for SLA in our paper as a reasonable
approximation. We assume that if the round trip time of
the request is shorter than Ref (reference time), then the
service provider will earn some revenue. Otherwise, the
service provider will pay a penalty back to the client. As
a result, in order to minimize the SLA penalty cost, the
performance controller should keep the response time right
below Ref .

B. Test Bed

We use RUBiS [5] as the benchmark application. It is an
on-line auction benchmark comprised of a front-end Apache
Web server, a Tomcat application server, and a back-end
MySQL database server. There are 26 transaction types in
RUBiS. The types of the next request generated by the
workload generator are defined by a state transition matrix
that specifies the probability to go from one transaction
to another. In our experiments, we use “Browsing mix”
workload that has 10 transaction types, e.g., Home, Browse,
ViewItem. These transactions have different resource de-
mands.

Figure 2. The architecture of our test bed.

We assume that each of the three tiers of the application is
hosted in one Xen virtual machine [6]. Our test bed consists
of three physical machines as shown in Figure 2. One of
them is used for hosting the three VMs, one for the client
emulator and the last one for running the controller. Each
machine is an Intel Pentium 4 1.80GHz, 1 GB RAM PC with
Gigabit Ethernet connected to the switch. All machines run
Linux kernel 2.6.16.29. The hosting machine runs Xen 3.0.3.
We use Apache v2.0.54 as the web server, Jakarta Tomcat
v5.0.28 as the application server and MySQL v3.23.58 as
the database server.

C. Closed, open and semi-open workload generators

A workload generator is needed to generate requests to
emulate the behavior of clients. To evaluate the robustness of
our approach, we create three types of workload generators
that can represent different client behaviors [7].

A workload generator is called closed if new requests
are triggered only after previous requests have been com-
pleted or timeout. The original RUBiS implementation is a
standard closed-loop client emulator. The client generates
new request(interaction) after it receives the response of the
previous request and waits for an exponentially distributed
“think time”. Then each client has three possible statuses: (a)
waiting in queue; (b) being served by server or (c) “thinking”
for some amount of time. The action sequence of each
session follows these steps: (a) to (b), (b) to (c) and (c) back
to (a). Then the intensity of the workload depends on the
number of the clients and the think time. The number of the
clients is also called multiprogramming level (MPL). and the

default think time between two requests is 3.5s. Therefore,
different MPL represents different intensity of the workload,
or request rate.

A workload generator is called open if new requests are
generated independently of completion of previous requests.
We modify the source code of original RUBiS workload
generator to emulate open clients where the number of
requests follows the Poisson distribution with a parameter
of the arrival rate.

A workload generator is called semi-open if after a client
receives a response for the previous requests, it will stay
and make a follow up request with some probability p and
will leave system with probability 1 − p. In the extreme
cases with very small or large p, the semi-open workload
generator resembles an open or a closed one respectively.
We also modify the source code of original RUBiS workload
generator to be a semi-open client emulator. The intensity
of the workload is determined by the arrival rates as well as
the probability p. In order to get a balance between closed
and open models, we set the default probability p = 0.5 in
our experiments.

It is worthwhile to note that, neither the open system
model nor the closed system model is entirely realistic [7].
The client behavior in many N -tier web applications is
best represented using an “in-between” system model, i.e.,
semi-open model. In the rest of the paper, we call the
RUBiS web application using closed, open and semi-open
workload generators as closed, open and semi-open RUBiS
web applications respectively.

D. Control architecture for an N -tier web application
Table I

NOTATIONS
k control interval for container level controller
K control interval for application level controller
N number of tiers (e.g., Web, App, DB)
Ω number of transaction types (e.g., Browse, Bid)
Tcpu average resident time on CPU resources
Tothers average resident time on non-CPU resources
λω average arrival rate of transactions type ω
λ aggregate arrival rate of all transaction types
αω average service time of non-CPU resources of

transaction type ω
un CPU entitlement that is allocated to the virtual server

at tier n
cn CPU consumption of the virtual server at tier n
rn CPU utilization of the virtual server at tier n

To manage the resources for the application, we developed
and implemented a performance controller as shown in
Figure 2. In the application level, an application controller
is used for end-to-end performance guarantee of the whole
application through dynamic tuning of the total amount of
the resources allocated to the application. The controller
works in 90 seconds time interval. In the container level,
there is one resource partition controller that is to allocate
the total resource to the application tiers or the containers.

The controller works in 10 seconds time interval. We will
use the notations in Table I in our paper. Specially, we use k
and K to denote the control intervals of the container level
and application level controllers respectively. We use “enti-
tlement” (u) and “consumption or usage” (c) to refer to the
CPU shares (in percentage of total CPU capacity) allocated
to a virtual machine and the CPU share actually used by
the virtual machine respectively. We use “utilization” (r) to
refer to the ratio between consumption and entitlement, i.e,
r = c

u .

III. RESOURCE PARTITION CONTROLLER

For a given end-to-end performance target such as round
trip time of request threshold, there is one optimal resource
allocation to the tiers of an N -tier web application that
can minimize the total resource allocation. On the other
hand, given certain amount of resources available to the
application, there exists also one optimal resource allocation
to the tiers that can minimize the end-to-end performance,
which is studied in this section based on queuing theory.

A. Modeling N -tier web application with open workload
1) N -tier web application: In our model, we consider a

multi-tier application consisting of N tiers. We assume that
each tier runs on a separate virtual machine. We consider
a workload with Ω transaction types. If we define the
intensity of the workload for the transaction type ω as
λω , then the intensity of the workload can be defined as
a vector (λ1, ..., λΩ). We also define the aggregate rate of
the transaction as λ =

∑Ω
ω=1 λω .

2) End-to-end performance: The Round Trip Time
(RTT) of an N -tier web application with open workload
can be calculated by aggregating the resident times over all
resources (e.g., CPU, disk) across all the tiers. The resident
time on each tier is composed of two parts, i.e., the resident
time on CPU resources and that on non-CPU resources. We
assume that non-CPU resources are adequately provisioned
and hence the effect of contention for these resources on the
response time (i.e., the queuing delay) is negligible.

Since processor sharing (PS) approximates round-robin
scheduling with small quantum size and negligible overhead,
it is representative of scheduling policies in current com-
modity operating systems [8]. Moreover, a Poisson process
is a good approximation of requests for open workload. We
model CPU in each tier as an M/G/1/PS queue.

We use Tcpu to denote the total resident time on CPU
across all the tiers. According to the queuing theory, for
M/G/1/PS queue, the CPU resident time in the n-th tier
is represented by Tn = rn

λ(1−rn) where rn is the CPU
utilization of tier n. Note that CPU utilization in the above
equation is the ratio between the virtual machine’s CPU
consumption and its effective CPU capacity, then we have

Tcpu =

N∑
n=1

Tn =

N∑
n=1

rn
λ(1− rn)

=

N∑
n=1

cn
λ(un − cn)

We use Tothers to denote the total resident time spent on all
non-CPU resources. We use αω to represent service times of
transaction type ω on all non-CPU resources of all tiers on
the execution path of that transaction type. Then the mean
resident time on non-CPU resources can be approximated by
the weighted sum of each transaction type’s service time.

Tothers =

Ω∑
ω=1

αω
λω
λ

Assume that there is an additive relationship between time
spent in CPU and non-CPU resources, by combining Tcpu
and Tothers, we have

RTT = Tcpu + Tothers =
1

λ
(

N∑
n=1

cn
un − cn

+

Ω∑
ω=1

αωλω)

As stated in Section II, the types of the next request gener-
ated by the virtual clients are defined by a state transition
matrix. Given a state transition matrix which describes the
transition relationship among the 10 transaction types in
“Browsing mix” of RUBiS, we can assume that the share
of each transaction types is constant when the running time
is long enough, i.e., λω

λ is constant. For simplicity, we also
assume that the average service time of non-CPU resources
of each transaction type is constant since the effect of
contention for these resources on the response time (i.e.,
the queuing delay) is negligible, i.e., αω is constant. If we
can denote

∑Ω
ω=1 αω

λω

λ = β as a constant, then we have

RTT = Tcpu + Tothers =
1

λ

N∑
n=1

cn
un − cn

+ β

We can see that, the resource entitlement solution for an N -
tier web application is not unique for given RTT target.
Similarly, for given capacity available to the application,
there is an optimal solution for the resource allocation to
the multiple tiers that can minimize the RTT .

B. Optimal resource partition

Assume that the total CPU resource available for the
application, or the total CPU shares that the N -tier web
application provider rents, is fixed. Then we have an opti-
mization problem defined as following.

Minimize RTT =
1

λ

N∑
n=1

cn
un − cn

+ β

s.t. S =

N∑
n=1

un.

There are N independent variables, i.e., un where n =
1, ..., N . The problem can be denoted as

Minimize f(u1, u2, ..., uN)

s.t. g(u1, u2, ..., uN) = 0

where

f(u1, u2, ..., uN) =
1

λ

N∑
n=1

cn
un − cn

+ β

and

g(u1, u2, ..., uN) =

N∑
n=1

un − S = 0

Then we have the Lagrange function as

Γ(u1, u2, ..., uN) = f(u1, u2, ..., uN) + γg(u1, u2, ..., uN)

=
1

λ

N∑
n=1

cn
un − cn

+ β + γ(

N∑
n=1

un − S).

where γ is a Lagrange multiplier and the partial derivative
equations are

∂Γ

∂un
= 0 = − 1

λ

cn
(un − cn)2

+ γ = 0, n = 1, 2, ..., N

∂Γ

∂γ
= 0 =

N∑
n=1

un − S

By solving the above equations, we can get the optimal
solution

un = cn +

√
cn∑N

n=1

√
cn

(S −
N∑
n=1

cn)

Then the controller to implement the optimal solution in
every control interval k is

un(k + 1) = cn(k) +

√
cn(k)∑N

n=1

√
cn(k)

(S(k)−
N∑
n=1

cn(k))

From the solution we can see that, the optimal resource
budget for each tier is composed of two parts: the first is
equal to the actual resource consumption of that tier, and
the second is a weighted share of the remaining budget
(i.e., S(k) −

∑N
n=1 cn(k)). It is worthwhile to note that,

the optimal solution depends on the CPU consumption of
the tiers in the last interval, but not on β, the effect of the
non-CPU resources. Moreover, the optimal solution does not
necessarily result in the equal utilization of the tiers if the
resource consumptions are different from each other, as we
will show in the next section.

IV. EVALUATION OF RESOURCE PARTITION
CONTROLLER

In this section, we evaluate the optimal partition controller
through comparison with two other approaches: “Equal
Utilization” and “Equal Shares”.

A. Different resource partition schemes and experimental
settings

Optimal : With the scheme “Optimal”, the resource is
allocated to the tiers according to optimal resource partition

scheme as described in the previous section.
Equal Utilization : With the scheme “Equal Utilization”,

the resource is allocated to the tiers such that they have the
same utilization, i.e., for n = 1, 2, .., N , rn are the same.

Equal Shares : With the naive scheme of “Equal Shares”,
the resource is shared equally by all the tiers, i.e., for n =
1, 2, .., N , un are the same.

In our experiments, we fix the total CPU share for
partition at 0.5 CPU. We then vary the workload rate from
15req/s to 50req/s. For each workload style, each workload
rate and each partition scheme, we run one experiment
for 900s. For open workload generator, we change the
arrival rate between 15req/s and 50req/s. For closed one,
we change the MPL between 52 and 175 such that the
average request rate is varied between 15req/s and 50req/s 2

with the response time of the requests much less than the
think time [9]. For semi-open one, we change the arrival rate
between 7.5req/s and 25req/s. Since the default probability
p = 0.5, the average request rate is 15req/s to 50req/s 3

since the response times of the requests are much less than
the think time [9]. Although the optimal solution is derived
based on an open queueing model, it would be interesting
to evaluate how well it works for closed or semi-open
workloads.

B. Experimental results

We denote “Optimal”, “Equal Utilization” and “Equal
Shares” as “Opt”, “Util” and “Shares”, respectively. Fig-
ures 3-5 show the mean round trip time resulted from
the experiments for the three approaches, for the three
workloads, “closed”, “open”, or “semi-open”, when the rate
can vary between 15 and 50req/sec.

We have several observations. Firstly, the “Opt” approach
outperforms the other two approaches. On average, with the
same total CPU shares, our method “Opt” can achieve about
20% shorter round trip time than the other two methods.
Note that, this better performance can be achieved under
different workload intensity (from 15 req/s to 50 req/s) as
well as under different workload type (open, close, semi-
open). This proves the robustness of our optimal partition
scheme. Secondly, as we can see, the performance of
Semi-open is in between that of Open and Closed. This
validates the previous results that different workload type
will demonstrate different performance as reported in [7]
and [9]. Finally, Figures 3-5 show the relationship between
the response time and the workload, or equivalently the
relationship between the response time and the resource

2When the response time of the requests are much less than the think time
and the system is not saturated, the request rate can be simply calculated as

MPL
ThinkTime

. For example, given MPL = 52 and ThinkT ime = 3.5s,
the request rate is around 15req/s according to queueing theory.

3When the response time of the requests are much less than the think time
and the system is not saturated, the request rate can be simply calculated as
λ

1−p . For example, given λ = 7.5 and p = 0.5, the request rate is around
15req/s according to queueing theory.

Figure 3. Mean RTT for Closed workload Figure 4. Mean RTT for Open workload Figure 5. Mean RTT for Semi-Open workload

Figure 6. Web tier with Open workload Figure 7. Application tier with Open workload Figure 8. Database tier with Open workload

utilization as the total CPU allocation is the same, and the
CPU consumption is almost the same with the different
workload models. The response time is a nonlinear, but
monotonically increasing function of CPU utilization. Note
that the change of utilization can result from both workload
variance and dynamic resource entitlement.

We zoom in the application with open workload generator.
Figures 6-8 show the resource utilization levels of the
three tiers of the application with open workload generator,
when the resource is under control of the three approaches
respectively. We also can have several observations. (1)As
we expected, the utilization of the three tiers for the “Util”
partition scheme is always the same when the workload
varies. This is because the “Util” partition scheme tries
to keep the same utilization level for all the three tiers.
(2) When the application is under control of the “Opt”
controller, the utilization of the web tier is overall lower
than that resulted from “Util” controller, while that of the
DB tier is overall higher. This implies that, compared with
“Util” controller, relatively less CPU is allocated to the DB
tier, while more CPU is provided to the Web tier. (3) The
CPU resource is equally shared by the three tiers when the
application is under control of “Shares” controller. It results
at further lower utilization at Web tier, the higher utilization
at the DB tier than those from the other two controllers.
When workload is high, e.g., 50req/s, “Equal Shares” has
very long round trip time, because of the extremely high
utilization of the DB tier as shown in Figure 8.

C. Discussion

The solution that is proposed in the previous two sections
can be generally used to address the optimal partition prob-
lem for the N -tier web application provider. It is worthwhile
to note that the optimal solution does not depend (directly)
on the workload parameters such as the workload intensity,

the workload transaction types, and the service times that
are usually challenging to be derived or measured. Instead,
it depends on the CPU consumption of the individual tiers,
which are readily available in standard systems with non-
intrusive measurement. Moreover, the solution is indepen-
dent of the service time on all non-CPU resources (with
the general assumption that they are not bottleneck). In the
future, we will use more complicated model, e.g., layered
queuing model [10], to consider other system resources (e.g.,
disk and network).

From the experiments, although M/G/1/PS model is a
good approximation for the average behavior of the open
RUBiS web application, it is interesting to find that the
“Opt” partition scheme still outperforms the other methods
for closed and semi-open workload styles as well. As a piece
of future work, we are to explore further on how well this
approximation can be to improve the resource efficiency.

V. APPLICATION CONTROLLER DESIGN

We describe how to design an application level feedback
controller in this section. Note that, the aim of the controller
is to keep the round trip time right below Ref in order
to minimize the SLA penalty cost while minimizing the
total resource allocated to the application. For the N -tier
web application, this objective can be formalized as another
constraint optimization problem, i.e., to minimize the total
resource consumption with constraints on the reference
response time Ref .

Minimize S =

N∑
n=1

un (1)

s.t. RTT =
1

λ

N∑
n=1

cn
un − cn

+ β ≤ Ref (2)

However, there are at least three issues that make it chal-
lenging to solve the optimization problem directly. First, one
more parameter β is to be identified. Second, there is always
in-accuracy with the model. And third, the workload can
vary along the time. In our approach, we solve the problem
in two steps, or two layers as shown in Figure 2. In the first
step, a feedback controller is applied to find the minimal
total amount of CPU resources that can meet the end-to-end
response time threshold. We call it the application controller.
In the second step, the optimal resource partition controller,
as described in previous section, is taken to allocate the
“minimal total CPU resource” to the different tiers of the
application.

A. System Identification

As stated in related works [11], the relationship between
the resource entitlement and response time is nonlinear and
depends on the variation of workloads. However, we can still
assume that the relationship can be estimated by a linear
function in the neighborhood of an operating point. We
adopt autoregressive-moving-average (ARMA) model [12]
to represent this relationship.

We run system identification experiment to determine the
relationship between the mean RTT and the total CPU
allocation to all the three tiers. In each experiment with
workload rate w, the total CPU is randomly varied in
[0.20CPU, 0.80CPU]. The mean RTT sampling interval is
fixed at 90 seconds. Each experiment runs 100 intervals,
i.e., 9000 seconds. The workload rate w varies from 10 to
25 requests per second. The experiment was repeated for
each rate. We use the first 50 samples to train the model
and then use the second 50 samples to evaluate the model.

We find that, if we take the mean RTT as output and
CPU shares as input in the ARMA model, there is no good
fit model. However, if we take the reverse of mean RTT as
output and CPU share as input in the ARMA model, there
exist good fit models. Assume the mean RTT at the K-th
interval is RTT (K), we define y(K) = 1/RTT (K). We
define the operating point of y(K) as y0 and the CPU share
as S0, define ∆y(K) = y(K)− y0, and ∆S(K) = S(K)−
S0. We choose the following ARMA model to represent the
dynamic relation between ∆y(K) and ∆S(K).

∆y(K) =

n∑
i=1

ai∆y(K − i) +

m∑
j=1

bj∆S(K − j).

where the parameters ai, bj , the orders n and m character-
ize the dynamic behavior of the system. For convenience,
we refer to such a model as “ARXnm” in the following
discussion. The model above was estimated offline using
least-squares based methods in the Matlab System ID Tool-
box [13] to fit the input-output data collected from the
experiments. The models are evaluated using the r2 metric
defined in Matlab as a goodness-of-fit measure. In general,

the r2 value indicates the percentage of variation in the
output captured by the model.

From the data in Table II, we can find that a simple model
ARX01 can fit the input-output data well enough, although
the ARX11 model has marginally better fitting numbers.
This is reasonable, given that, the modeling and control
interval is much longer than the queuing time, and the
queuing process is the main resource of the dynamics in the
system. Figure 9 demonstrates how the model works when
rate is 20req/s. However, we also find that, the parameters
of the models vary along the workload, which implies that a
controller with fixed parameters may not work in the whole
range of operation conditions.

Table II
r2 VALUES FOR ARX MODELS

Rate(req/s) 10 15 20 25
r2 (ARX01) 0.9370 0.9123 0.9015 0.8687
r2 (ARX11) 0.9410 0.9282 0.9265 0.8935

Figure 9. Fitting result for 20req/s
B. Controller Design

In our experiments, we choose ARX01 as our model,
which implies that

∆y(z)

∆S(z)
= az−1

where y(z) and S(z) are the z-transform of y and S. We
use an proportional-integral (PI) controller whose transfer
function can be described as

∆S(z)

e(z)
= kp +

kiz

z − 1

where kp and ki are the proportional and integral gains of
the controller, respectively and e(z) is the z-transform of the
error. Then we have the closed model transfer function:

C(z) =
G(z)

1−G(z)
=

(ki + kp)az − kpa
z2 + ((ki + kp)a− 1)z − kpa

During our experiments, the parameter a of the model above
is identified online through a recursive least square method
to accommodate the nonlinear and time-varying behavior
of the system. Then we use the Root Locus [14] method to

design the controller parameters kp and ki so that the setting
time of the controller is within three steps and overshooting
within 10% for a step response.

VI. PERFORMANCE GUARANTEE THROUGH ADAPTIVE PI
CONTROL

We evaluate the two-layer performance controller that
integrates application controller with different resource parti-
tion schemes in this section. We first show how the different
resource partition schemes can be formulated as different
constraint optimization problems. Then we describe the
time-varying workload that we use for evaluation in detail.
Finally, we present the evaluation results using different
SLAs.

A. Comparison of performance controller based on different
resource partition schemes

The application performance controller with “Optimal”
partition scheme solves the constraint optimization problem
as shown in (1) and (2).

According to the definitions, the application performance
controller with “Equal Utilization” solves the following
constraint optimization problem:

Minimize S =

N∑
n=1

un (3)

s.t. RTT =
1

λ

N∑
n=1

cn
un − cn

+ β ≤ Ref (4)

r =
c1
u1

=
c2
u2

= ... =
cN
uN

(5)

Similarly, the application performance controller with
“Equal Shares” solves the following constraint optimization
problem:

Minimize S =

N∑
n=1

un (6)

s.t. RTT =
1

λ

N∑
n=1

cn
un − cn

+ β ≤ Ref (7)

u = u1 = u2 = ... = uN (8)

Comparing the different constraint optimization problems,
we can see that, all the three problems share the same
objective (1) and the constraint (2). However, “Equal Uti-
lization” appends the constraint (5) while “Equal Shares”
has the constraint (8). “Equal Utilization” has been used
in [15] for the benefits of simple communication between
an application controller and container controllers. Although
it does differentiate the resource partition to the three tiers
using the relative metrics, e.g., the resource utilization, it is
still not optimal as there is no guarantee that constraint (5)
will still hold in the optimal solution.

Table III
STEADY-STATE PERFORMANCE WHEN SETTING RTT =35MS

Response Time (ms) Thr CPU Resource
Mean (std) 50p 90p 95p Ent Con

Opt 36 (52) 12 103 139 18.8 0.54 0.16
(close)

Util 36 (56) 12 115 153 18.9 0.64 0.16
(close)

Opt 37(53) 12 104 142 19.1 0.57 0.16
(open)

Util 37 (58) 12 115 154 19.1 0.67 0.16
(open)

B. Time-varying workload for evaluation

We use a real workload trace as shown in Figure 10 to
evaluate the application performance under the application
controller with different resource partition schemes. The
workload trace is generated based on the Web traces from
the 1998 World Cup site [16]. We extract the “request rate”
metric from the Web trace and scale it down to fit our
experiment environment. For example, we use 10req/s to
mimic 10k request rate and use 20req/s to mimic 20k request
rate. The initial CPU shares were set to 50. Each experiment
runs 9000 seconds. To evaluate the controllers, we run a set
of experiments with different styles of workloads (open or
closed), and different resource partition schemes (“Opt” or
“Util”) in the container level. Thus, there will be four cases
in a set of experiments. In our experiments, we try two SLAs
where the threshold for the mean round trip time is 35ms
and 200ms, respectively.

C. Setting point for the mean round trip time is 35ms

Figures 11 and 12 show the experimental results when the
setting point for the mean round trip time is 35ms. Table III
shows more statistics of the four cases: the mean, the
standard deviation, the 50/90/95 percentiles of the response
times of the individual requests, the throughput (req/sec),
the total CPU entitlement and the total CPU consumption.
The samples for the statistics are between the 10th interval
and the 70th interval, where there are no obvious overshoots
of the response times and the mean RTT is maintained
much closer to the reference values. The cases with “Opt”
controller have lower percentile response times, compared
with that with “Util” controller. Moreover, up to 20% less
amount of CPU resource is provisioned to the application
in the cases with “Opt” controller while the throughputs are
the same and so are the consumptions.

D. Setting point for the mean round trip time is 200ms

The application with closed workload is a “self-tuning”
system. According to Little’s law, we can derive that the
relation between the throughput and RTT for the application
with closed workload can be approximated as

Throughput =
MPL

RTT + ThinkT ime

Figure 10. World Cup Trace Figure 11. Mean RTT with Closed Workload Figure 12. Mean RTT with Open Workload

The above model implies that the throughput should vary
along with the RTT . However, as shown in Table III,
the throughput of the applications with the open or closed
workloads is almost the same. This is because that, in the
above experiments, the default think time 3.5s and the setting
point of RTT=35ms, that is, RTT << ThinkT ime. So
the throughput is almost not affected by the RTT , and the
closed system works very similar as the open one.

To see the difference of the closed and open systems,
we reduce the think time for the closed system to 350ms
and increase the setting point of RTT to 200ms. We run
the same set of experiments. The RTT during each interval
and the steady state performance are shown in Figures 13-
14 and Table IV. Table IV shows that the throughput can be
affected by the response time for the closed system. From
Figure 13, we can see that the controller works well with
closed workload and the performance is well tracked as
shown in Table IV. However, the performance seems out
of control for the open system as shown in Figure 14. Upon
sharp changes of the workload, there are very long transient
processes before the response time converges. This can be
due to the high utilization of the applications, when the
response time is very sensitive to changes of the resources.
It implies that, the parameters of the adaptive PI controllers
have to be carefully tuned for the open system when the
utilization is pushed high. As one more piece of work,
we are working with a more robust adaptive controller
to accommodate different types of workloads in a wider
operation region.

Figure 13. Mean RTT with
Closed Workload

Figure 14. Mean RTT with Open
Workload

VII. RELATED WORKS

Virtual resource management in Cloud environment has
been studied with goals such as QoS awareness, performance
isolation and differentiation as well as higher resource

Table IV
STEADY-STATE PERFORMANCE WHEN SETTING RTT =200MS

Response Time (ms) Thr CPU Resource
Mean (std) 50p 90p 95p Ent Con

Opt 205(214) 140 461 608 28 0.26 0.213
(close)

Util 205(229) 142 472 617 28 0.29 0.214
(close)

Opt 225(363) 136 475 661 42 0.43 0.301
(open)

Util 230(399) 136 481 686 42 0.47 0.313
(open)

utilization [1]. Pradeep et al. develop an adaptive resource
control system that dynamically adjusts the resource shares
to applications in order to meet application-level QoS goals
while achieving high resource utilization in the data cen-
ter [12]. Lu et al. dynamically adjust the cache size for
multiple request classes [17]. Krasic et al. [18] propose an
approach called cooperative polling to ensure rigorous all ap-
plications fairly share resources. Lu et al. propose scheduling
scheme to satisfy the requirements of different QoS requests
for access to the networked storage system [19]. Most of the
above works adopt either closed workload or open workload
and pay little attention to whether a workload generator is
closed or open. As illustrated in [7] and our paper, there is a
vast difference in behavior between open and closed models
in real-world settings. This motivates the use of partly open
system models, whose behavior we show to lie between
that of closed and open models. Compared with previous
works, we specify how control policies are impacted by
different models, and explain the differences in user level
performance.

Besides the general system metrics that can be tuned
for general systems, there are also lots of special intrinsic
parameters for N -tier web applications that can be tuned
to improve the performance. By carefully exploiting those
potential parameters, we are able to use the resources more
efficiently. For example, some previous works implement
utilization controllers for each tier to maintain the utilization
at the targeted level. A few workload management products
like [15] maintain the utilization at a default utilization
target, e.g., 75%. However, setting the same utilization for all
the tiers is not the best option as shown in our experiments.
Instead, after modeling the system with a tandem queue, we

formulate the problem as an optimization problem and also
derive a solution for the problem. The experiment shows
that our method can save up to 20% resource than “Equal
Utilization” and “Equal Shares” schemes but achieve almost
the same performance. Moreover, with different workload
styles like closed and semi-open, our method still outper-
forms others.

VIII. CONCLUSION

Although several contemporary approaches employ con-
trol theory to manage resources in virtualized applications,
not enough attention has been paid to the effects of workload
styles and resource partition scheme. However, both of these
problems are important in N -tier web applications deployed
in Cloud environments.

In this paper, we address these two problems through
a multi-level control approach. First, we showed that a
round trip time-optimal resource partitioning scheme for the
component servers could be found. We have benchmarked
our method against state-of-the-art methods like “Equal
Utilization” and “Equal Shares”. Although we obtain our
optimal partition scheme through open workload style, it
still outperforms others for applications with closed/semi-
open workload styles. Second, we developed an adaptive
PI controller to control the mean round trip time for N -
tier web application with resource partitioning schemes.
Experimental results show that our solution outperforms
other existing approaches in two aspects, (1) our multi-level
control approach can achieve almost the same performance
with the state-of-the-art methods but save up to 20% CPU
resources. (2) our approach is robust to deal with different
workload styles.

There are quite a few pieces of on-going and future
work. (1) We use a single step function to model SLA cost
function so that we can use performance controller to track
the reference mean round trip time. However, we need to
look into more general SLA cost function and explore how
it can affect the application of the derived results. (2) We
assume that there is an additive relationship between time
spent in CPU time and non-CPU resources. However, if we
look at networking as a non-CPU resource (e.g., data transfer
between two tiers), then data transfer time can overlap with
CPU time. Hence, we need a better model for the parameter
β. (3) We design the performance controller by using the
open workload. Although the controller also works for the
close/semi-open workloads, it would be interesting to see
what can we get if we design the performance controller by
using the closed or semi-open workloads.

REFERENCES

[1] R. Nathuji, A. Kansal, and A. Ghaffarkhah, “Q-clouds: man-
aging performance interference effects for qos-aware clouds,”
in Proc. of EuroSys, 2010.

[2] “Amazon elastic compute cloud,”
http://aws.amazon.com/ec2/.

[3] Y. Diao, N. Gandhi, J. L. Hellerstein, S. Parekh, and D. M.
Tilbury, “Using mimo feedback control to enforce policies
for interrelated metrics with application to the apache web
server,” in Proc. of NOMS, 2002.

[4] S. Malkowski, M. Hedwig, D. Jayasinghe, C. Pu, and D. Neu-
mann, “Cloudxplor: A tool for configuration planning in
clouds based on empirical data,” in Proc. of SAC, 2010.

[5] “Rubis,” http://rubis.ow2.org/.

[6] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield, “Xen and the art of
virtualization,” in Proc. of SOSP, 2003.

[7] B. Schroeder, A. Wierman, and M. Harchol-Balter, “Open
versus closed: a cautionary tale,” in Proc. of NSDI, 2006.

[8] E. Lazowska, J. Zahorjan, G. Graham, and K. Sevcik, Quanti-
tative System Performance: Computer System Analysis Using
Queueing Network Models. NJ: Prentice-Hall, Inc., 1984.

[9] P. Xiong, Z. Wang, G. Jung, and C. Pu, “Study on perfor-
mance management and application behavior in virtualized
environment,” in Proc. of NOMS, 2010.

[10] G. Jung, K. Joshi, M. Hiltunen, R. Schlichting, and C. Pu,
“A cost-sensitive adaptation engine for server consolidation
of multi-tier applications,” in Proc. of Middleware, 2009.

[11] Z. Wang, Y. Chen, D. Gmach, S. Singhal, B. Watson,
W. Rivera, X. Zhu, and C. Hyser, “Appraise: Application-level
performance management in virtualized server environments,”
IEEE Trans. on network and service management, vol. 6,
no. 4, 2009.

[12] P. Padala, K. Hou, X. Zhu, M. Uysal, Z. Wang, S. Singhal,
A. Merchant, and K. Shin, “Automated control of multiple
virtualized resources,” in Proc. of Eurosys, 2009.

[13] “System identification,” http://www.mathworks.com/products/sysid/.

[14] J. Hellerstein, Y. Diao, S. Parekh, and D.Tilbury, Feedback
Control of Computing Systems. John Wiley & Sons, 2004.

[15] “Hp global workload manager (gwlm),”
http://mslweb.rsn.hp.com/gwlm/index.html.

[16] M. Arlitt and T. Jin, “Workload characterization of the 1998
world cup. web site,” HP Tech. Rep., 1999.

[17] Y. Lu, T. F. Abdelzaher, and A. Saxena, “Design, implementa-
tion, and evaluation of differentiated caching services,” IEEE
Trans. on Parallel and Distributed Systems, vol. 15, pp. 440–
452, 2004.

[18] C. Krasic, M. Saubhasik, A. Sinha, and A. Goel, “Fair
and timely scheduling via cooperative polling,” in Proc. of
Eurosys, 2009.

[19] Y. Lu, D. H.-C. Du, C. Liu, and X. Zhang, “Qos scheduling
for networked storage system,” in Proc. of ICDCS, 2008.

